Biblioteca de la Universidad Complutense de Madrid

Pointwise Lipschitz functions on metric spaces


Durand-Cartagena, E. y Jaramillo Aguado, Jesús Ángel (2010) Pointwise Lipschitz functions on metric spaces. Journal of Mathematical Analysis and Applications, 363 (2). pp. 525-548. ISSN 0022-247X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


For a metric space X, we study the space D(infinity)(X) of bounded functions on X whose pointwise Lipschitz constant is uniformly bounded. D(infinity)(X) is compared with the space LIP(infinity)(X) of bounded Lipschitz functions on X, in terms of different properties regarding the geometry of X. We also obtain a Banach-Stone theorem in this context. In the case of a metric measure space, we also compare D(infinity)(X) with the Newtonian-Sobolev space N(1,infinity)(X). In particular, if X Supports a doubling measure and satisfies a local Poincare inequality, we obtain that D(infinity)(X) = N(1,infinity)(X).

Tipo de documento:Artículo
Palabras clave:Lipschitz functions; Banach–Stone theorem; Metric measure spaces; Newtonian–Sobolev spaces
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:16235

L. Ambrosio, P. Tilli, Topics on Analysis in Metric Spaces, Oxford Lecture Ser. Math. Appl., vol. 25, Oxford University Press, 2004.

Z.M. Balogh, K. Rogovin, T. Zurcher, The Stepanov differentiability theorem in metric measure spaces, J. Geom. Anal. 14 (3) (2004) 405–422.

J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428–517. ] G.B. Folland, Real Analysis, Modern Techniques and Their Applications, John Wiley & Sons, 1999.

B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957) 171–219.

M.I. Garrido, J.A. Jaramillo, A Banach–Stone theorem for uniformly continuous functions, Monatsh. Math. 131 (2000) 189–192.

M.I. Garrido, J.A. Jaramillo, Homomorphism on function lattices, Monatsh. Math. 141 (2004) 127–146.

M.I. Garrido, J.A. Jaramillo, Lipschitz-type functions on metric spaces, J. Math. Anal. Appl. 340 (2008) 282–290.

P. Hajłasz, Sobolev spaces on metric-measure spaces, Contemp. Math. 338 (2003) 173–218.

P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996) 403–415.

J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, 2001.

J. Heinonen, Nonsmooth calculus, Bull. Amer. Math. Soc. 44 (2007) 163–232.

J. Heinonen, P. Koskela, Quasiconformal maps on metric spaces with controlled geometry, Acta Math. 181 (1998) 1–61.

J.R. Isbell, Algebras of uniformly continuous functions, Ann. Math. 68 (1958) 96–125.

E. Jarvenpaa, M. Jarvenpaa, K. Rogovin, S. Rogovin, N. Shanmugalingam, Measurability of equivalence classes and MECp -property in metric spaces, Rev. Mat. Iberoamericana 23 (2007) 811–830.

S. Keith, A differentiable structure for metric measure spaces, Adv. Math. 183 (2004) 271–315.

V. Magnani, Elements of geometric measure theory on sub-Riemannian groups, PhD theses series of Scuola Normale Superiore di Pisa, 2002.

P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Stud. Adv. Math., vol. 44, Cambridge University Press, 1995.

S. Semmes, Some Novel Types of Fractal Geometry, Oxford University Press, 2001.

N. Shanmugalingam, Newtonian spaces, An extension of Sobolev spaces to metric measure spaces, PhD thesis, University of Michigan, 1999,

N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000) 243–279.

N. Weaver, Lipschitz Algebras, World Scientific, Singapore, 1999.

Depositado:10 Sep 2012 10:58
Última Modificación:07 Feb 2014 09:25

Sólo personal del repositorio: página de control del artículo