Universidad Complutense de Madrid
E-Prints Complutense

On the initial growth of interfaces in reaction-diffusion equations with strong absorption

Impacto

Descargas

Último año



Díaz Díaz, Jesús Ildefonso y Álvarez León, Luis (1993) On the initial growth of interfaces in reaction-diffusion equations with strong absorption. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 123 (5). pp. 803-817. ISSN 0308-2105

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

540kB

URL Oficial: http://journals.cambridge.org/abstract_S0308210500029504


URLTipo de URL
http://journals.cambridge.org/Editorial


Resumen

We study the initial growth of the interfaces of non-negative local solutions of the equation u(t) = (u(m))xx - lambdau(q) when m greater-than-or-equal-to 1 and 0 < q < 1. We show that if u(x, 0) greater-than-or-equal-to C(-x)+2/(m-q) with C > C0, for some explicit C0 = C0(lambda, m, q), then the free boundary zeta(t) = sup {x: u(x, t) > 0} is a ''heating front''. More precisely zeta(t) greater-than-or-equal-to at(m-q)/2(1-q) for any t small enough and for some a > 0. If on the contrary, u(x, 0) less-than-or-equal-to C(-x)+2/(m-q) with C < C0, then zeta(t) is a ''cooling front'' and in fact zeta(t) less-than-or-equal-to -at(m-q)/2(1-q) for any t small enough and for some a > 0. Applications to solutions of the associated Cauchy and Dirichlet problems are also given.


Tipo de documento:Artículo
Palabras clave:heat-equation; thermal waves; media
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:16257
Depositado:10 Sep 2012 09:37
Última Modificación:07 Feb 2014 09:26

Descargas en el último año

Sólo personal del repositorio: página de control del artículo