Universidad Complutense de Madrid
E-Prints Complutense

On the semialgebraic Stone-Čech compactification of a semialgebraic set



Último año

Fernando Galván, José Francisco y Gamboa, J. M. (2012) On the semialgebraic Stone-Čech compactification of a semialgebraic set. Transactions of the American Mathematical Society (364). 3479-3511 . ISSN 1088-6850

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://www.ams.org/journals/tran/2012-364-07/S0002-9947-2012-05428-6/S0002-9947-2012-05428-6.pdf

URLTipo de URL


In the same vein as the classical Stone–ˇCech compactification, we prove in this work that the maximal spectra of the rings of semialgebraic and bounded semialgebraic functions on a semialgebraic set M ⊂ Rn, which are homeomorphic topological spaces, provide the smallest Hausdorff compactification of M such that each bounded R-valued semialgebraic function on M extends continuously to it. Such compactification β∗sM, which can be characterized as the smallest compactification that dominates all semialgebraic compactifications of M, is called the semialgebraic Stone– ˇ Cech compactification of M, although it is very rarely a semialgebraic set. We are also interested in determining the main topological properties of the remainder ∂M = β∗sM \M and we prove that it has finitely many connected components and that this number equals the number of connected components of the remainder of a suitable semialgebraic compactification of M. Moreover, ∂M is locally connected and its local compactness can be characterized just in terms of the topology of M.

Tipo de documento:Artículo
Palabras clave:Semialgebraic function, maximal spectrum, semialgebraic compactification, semialgebraic Stone–Čech compactification, remainder
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:16315
Depositado:11 Sep 2012 08:59
Última Modificación:02 Mar 2016 14:37

Descargas en el último año

Sólo personal del repositorio: página de control del artículo