E-Prints Complutense

Non-Lipschitz functions with bounded gradient and related problems



Último año

Jiménez Rodríguez, Pablo y Muñoz-Fernández, Gustavo A. y Seoane-Sepúlveda, Juan B. (2012) Non-Lipschitz functions with bounded gradient and related problems. Linear Algebra and its Applications, 437 (4). pp. 1174-1181. ISSN 0024-3795

[img] PDF
Restringido a Sólo personal autorizado del repositorio


URL Oficial: http://www.sciencedirect.com/science/article/pii/S0024379512002741#

URLTipo de URL


Let E be a topological vector space and let us consider a property P. We say that the subset M of E formed by the vectors in E which satisfy P is μ-lineable (for certain cardinal μ, finite or infinite) if M ∪ {0} contains an infinite dimensional linear space of dimension μ. In this note we prove that there exist uncountably infinite dimensional linear spaces of functions enjoying the following properties:(1) Being continuous on [0, 1], a.e. differentiable, with a.e. bounded derivative, and not Lipschitz. (2) Differentiable in (R2)R and not enjoying the Mean Value Theorem. (3) Real valued differentiable on an open, connected, and non-convex set, having bounded gradient,non-Lipschitz, and (therefore) not verifying the Mean Value Theorem.

Tipo de documento:Artículo
Palabras clave:Lineability; Spaceability; Continuous non-Lipschitzfunctions; Mean Value Theorem
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:16318
Depositado:11 Sep 2012 09:38
Última Modificación:29 Nov 2016 09:08

Descargas en el último año

Sólo personal del repositorio: página de control del artículo