Llavona, José G. and Aron, R. M. and Choi, Y.S.
(1995)
*Estimates by polynomials.*
Bulletin of the Australian Mathematical Society, 52
(3 ).
475-486 .
ISSN 0004-9727

PDF
Restricted to Repository staff only until 31 December 2020. 495kB |

## Abstract

Consider the following possible properties which a Banach space X may have: (P): If (x(j)) and (y(j)) are are bounded sequences in X such that for all n greater than or equal to 1 and for every continuous n-homogeneous polynomial P on X, P(x(j)) - P(y(j)) --> 0, then, Q(x(j) - y(j)) --> 0 for all m greater than or equal to 1 and for every continuous us m-homogeneous polynomial Q on X.

(RP): If (x(j)) and (y(j)) are bounded sequences in X such that for all n greater than or equal to 1 and for every continuous n-homogeneous polynomial P on X, P(x(j) - y(j)) --> 0, then Q(x(j)) - Q(y(j)) --> 0 for all m greater than or equal to 1 and for every continuous m-homogeneous polynomial Q on X. We study properties (P) and (RP) and their relation with the Schur property, Dunford-Pettis property, Lambda, and others. Several. applications of these properties are given.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Space |

Subjects: | Sciences > Mathematics > Functional analysis and Operator theory |

ID Code: | 16382 |

References: | Alencar, R., Aron, R.M. and Dineen, S., ‘A reflexive space of holomorphic functions in infinitely many variables’, Proc. Amer. Math. Soc. 90 (1984), 407–411. Aron, R.M. and Galindo, P., ‘Weakly compact multilinear mappings’, (preprint). Aron, R.M. and Prolla, J.B., ‘Polynomial approximation of differentiable functions on Banach spaces’, J. Reine Agnew. Math. 313 (1980), 195–216. Carne, T., Cole, B. and Gamelin, T., ‘A uniform algebra of analytic functions on a Banach space’, Trans. Amer. Math. Soc. 314 (1989), 639–659. Castillo, J.F. and Sanchez, C., ‘Weakly-p-compact, p-Banach-Saks and super-reflexive Banach spaces’, J. Math. Anal. Appl. 185 (1994), 256–261. Choi, Y.S. and Kim, S.G., ‘Polynomial properties of Banach spaces’, J. Math. Anal. Appl. 190 (1995), 203–210. Davie, A.M. and Gamelin, T.W., ‘A theorem on polynomial-star approximation’, Proc. Amer. Math. Soc. 106 (1989), 351–358. Diestel, J., ‘A survey of results related to the Dunford-Pettis property’, in Contemp. Math. 2 (Amer. Math. Soc., Providence, R.I., 1980), pp. 15–60. Diestel, J., Geometry of Banach spaces, Lecture Notes in Mathematics 485 (Springer-Verlag, Berlin, Heidelberg, New York, 1975). Van Dulst, D., Reflexive and super-reflexive spaces, Math. Centre Tracts 102 (Amsterdam, 1982). Dunford, N. and Schwartz, J.T., Linear Operators, Part I, General Theory (J. Wiley, New York, 1964). Farmer, J.D., ‘Polynomial reflexivity in Banach spaces’, Israel J. Math. 87 (1994), 257–273. Farmer, J.D. and Johnson, W.B., ‘Polynomial Schur and polynomial Dunford-Pettis properties’, in Proc. Intern. Research Workshop on Banach Space Theory (Mérida, Venezuela), (Johnson, W.B. and Lin, B.L., Editors) (Amer. Math. Soc., Providence, RI, 1993), pp. 95–105. Jaramillo, J.A. and Prieto, A., ‘Weak-polynomial convergence on a Banach space’, Proc. Amer. Math. Soc. 118 (1993), 463–468. Josefson, B., ‘Bounding subsets of ℓ∞ (A)’, J. Math. Pures Appl. 57 (1978), 397–421. Grothendieck, A., ‘Sur les applications linéaires faiblement compactes d'espaces du type C(K)’, Canad. J. Math. 5 (1953), 129–173. Pelczynski, A., ‘A property of multilinear operations’, Studia Math. 16 (1957), 173–182. Petunin, Y.I. and Savkin, V.I., ‘Convergence generated by analytic functions’, Ukranian. Math. J. 40 (1988), 676–679. Rosenthal, H.P., ‘Some recent discoveries in the isomorphic theory of Banach spaces’, Bull. Amer. Math. Soc. 84 (1980), 803–831. Ryan, R.A., ‘Dunford-Pettis properties’, Bull. Acad. Polon. Sci. Math. 27 (1979), 373–379. |

Deposited On: | 17 Sep 2012 09:40 |

Last Modified: | 07 Feb 2014 09:28 |

Repository Staff Only: item control page