E-Prints Complutense

Composition operators between algebras of differentiable functions



Último año

Llavona, José G. y Gutiérrez, Joaquín M. (1993) Composition operators between algebras of differentiable functions. Transactions of the American Mathematical Society , 338 (2). pp. 769-782. ISSN 0002-9947

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://www.ams.org/journals/tran/1993-338-02/S0002-9947-1993-1116313-5/S0002-9947-1993-1116313-5.pdf

URLTipo de URL


Let E, F be real Banach spaces, U subset-or-equal-to E and V subset-equal-to F non-void open subsets and C(k)(U) the algebra of real-valued k-times continuously Frechet differentiable functions on U, endowed with the compact open topology of order k. It is proved that, for m greater-than-or-equal-to p, the nonzero continuous algebra homomorphisms A: C(m)(U) --> C(p)(V) are exactly those induced by the mappings g: V --> U satisfying phi . g is-an-element-of C(p)(V) for each phi is-an-element-of E*, in the sense that A(f) = fog for every f is-an-element-of C(m)(U). Other homomorphisms are described too. It is proved that a mapping g: V --> E** belongs to C(k)(V, (E**, w*)) if and only if phi . g is-an-element-of C(k)(V) for each phi is-an-element-of E*. It is also shown that if a mapping g: V --> E verifies phi . g is-an-element-of C(k)(V) for each phi is-an-element-of E*, then g is-an-element-of C(k-1)(V, E).

Tipo de documento:Artículo
Palabras clave:Differentiable mappings between banach spaces; Algebras of differentiable functions; Homomorphisms; Composition operators
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:16383
Depositado:17 Sep 2012 09:12
Última Modificación:07 Feb 2014 09:28

Descargas en el último año

Sólo personal del repositorio: página de control del artículo