Complutense University Library

On the spectra of rings of semialgebraic functions

Fernando Galván, José Francisco and Gamboa Mutuberria, José Manuel (2012) On the spectra of rings of semialgebraic functions. Collectanea mathematica, 63 (3). pp. 299-331. ISSN 0010-0757

[img] PDF
Restricted to Repository staff only until 31 December 2020.

504kB

Official URL: http://www.springerlink.com/content/403403218426u17m/fulltext.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

In this article we study the most significant algebraic, topological and functorial properties of the Zariski and maximal spectra of rings of semialgebraic and bounded semialgebraic functions on a semialgebraic set.

Item Type:Article
Uncontrolled Keywords:Semialgebraic function; Semialgebraic set; Zariski spectrum; Real spectrum; Maximal spectrum; Functoriality; Local compactness; Pieces; Semialgebraic depth; z-ideal
Subjects:Sciences > Mathematics > Functions
ID Code:16469
References:

Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergeb. Math., vol. 36. Springer, Berlin (1998)

Bourbaki, N.: General Topology, chapters 1–4. Elements of Mathematics. Springer, Berlin (1989)

Birkhoff G., Pierce R.S.: Lattice-ordered rings. An. Acad. Brasil. Ci. 28, 41–69 (1956)

Cherlin G.-L., Dickmann M.A.: Real closed rings. I. Residue rings of rings of continuous functions. Fund. Math. 126(2), 147–183 (1986)

Cherlin G.-L., Dickmann M.A.: Real closed rings. II. Model theory. Ann. Pure Appl. Log. 25(3), 213–231 (1983)

Delfs H., Knebusch M.: Separation, retractions and homotopy extension in semialgebraic spaces. Pac. J. Math. 114(1), 47–71 (1984)

Fernando, J.F.: On chains of prime ideals in rings of semialgebraic functions. http://www.mat.ucm.es/~josefer/pdfs/preprint/chains.pdf (preprint RAAG, 2010)

Fernando, J.F.: On distinguished points of the remainder of the semialgebraic Stone–Čech compactification of a semialgebraic set. http://www.mat.ucm.es/~josefer/pdfs/preprint/remainder.pdf (preprint RAAG, 2010)

Fernando, J.F.: On the fibers of semialgebraic spectral maps. http://www.mat.ucm.es/~josefer/pdfs/preprint/fibers.pdf (preprint RAAG, 2010)

Fernando, J.F., Gamboa, J.M.: On Łojasiewicz’s inequality and the Nullstellensatz for rings of semialgebraic functions. http://www.mat.ucm.es/~josefer/pdfs/preprint/null-loj.pdf (preprint RAAG, 2010)

Fernando, J.F., Gamboa, J.M.: On the Krull dimension of rings of semialgebraic functions. http://www.mat.ucm.es/~josefer/pdfs/preprint/dim.pdf (preprint RAAG, 2010)

Fernando, J.F., Gamboa, J.M.: On Banach-Stone type theorems in the semialgebraic setting. http://www.mat.ucm.es/~josefer/pdfs/preprint/homeo.pdf (preprint RAAG, 2010)

Fernando, J.F., Gamboa, J.M.: On the semialgebraic Stone–Čech compactification of a semialgebraic set. Transactions of AMS. http://www.ams.org/cgi-bin/mstrack/accepted_papers?jrnl=tran (2010, accepted)

Gillman, L., Jerison, M.: Rings of continuous functions. The University Series in Higher Nathematics, vol. 1. D. Van Nostrand Company, Inc., Princeton (1960)

De Marco G., Orsatti A.: Commutative rings in which every prime ideal is contained in a unique maximal ideal. Proc. Am. Math. Soc. 30(3), 459–466 (1971)

Schwartz, N.: Real closed spaces. Ordered fields and real algebraic geometry (Boulder, Colo., 1983). Rocky Mt. J. Math. 14(4), 971–972 (1984)

Schwartz, N.: The basic theory of real closed spaces. Mem. Am. Math. Soc. 77(397) (1989)

Stasica J.: Smooth points of a semialgebraic set. Ann. Polon. Math. 82(2), 149–153 (2003)

Deposited On:20 Sep 2012 09:02
Last Modified:07 Feb 2014 09:29

Repository Staff Only: item control page