Biblioteca de la Universidad Complutense de Madrid

On generating series of classes of equivariant Hilbert schemes of fat points

Impacto



Luengo Velasco, Ignacio y Gusein-Zade, Sabir Medgidovich y Melle Hernández, Alejandro (2010) On generating series of classes of equivariant Hilbert schemes of fat points. Moscow Mathematical Journal , 10 (3). pp. 593-602. ISSN 1609-3321

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

184kB

URL Oficial: http://www.ams.org/distribution/mmj/vol10-3-2010/abst10-3-2010.html




Resumen

We discuss different definitions of equivariant (with respect to an action of a finite group on a manifold) Hilbert schemes of zero-dimensional subschemes and compute generating series of classes of equivariant Hilbert schemes for actions of cyclic groups on the plane in some cases.


Tipo de documento:Artículo
Información Adicional:

The first named author supported in part by the grants RFBR-10-01-00678, NSh-709.2008.1. The last two authors were supported in part by the grant MTM2007-67908-C02-02.

Palabras clave:Hilbert schemes of zero-dimensional subschemes; Group actions, Generating series.
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:16511
Referencias:

J. Cheah, On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996), no. 3, 479–511.

S. Chen, Arithmetical properties of the number of t -core partitions, Ramanujan J. 18 (2009), no. 1, 103–112.

A. Craw, D. Maclagan, and R. R. Thomas, Moduli of McKay quiver representations. I. The coherent component, Proc. Lond. Math. Soc. (3) 95 (2007), no. 1, 179–198.

G. Ellingsrud and S. A. Strømme, On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987), no. 2, 343–352.

L. Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), no. 5–6, 613–627.

S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, A power structure over the Grothendieck ring of varieties, Math. Res. Lett. 11 (2004), no. 1, 49–57.

S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points, Michigan Math. J. 54 (2006), no. 2, 353–359.

T. Hausel, Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform, Proc. Natl. Acad. Sci. USA 103 (2006), no. 16, 6120–6124 (electronic).

G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. MR 644144. With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson.

M. Kapranov, The elliptic curve in the S -duality theory and Eisenstein series for Kac-Moody groups, Preprint arXiv:math/0001005 [math.AG].

D. Knutson, λ -rings and the representation theory of the symmetric group, Lecture Notes in Mathematics, Vol. 308, Springer-Verlag, Berlin, 1973.

A. Kuznetsov, Quiver varieties and Hilbert schemes, Mose. Math. J. 7 (2007), no. 4, 673–697, 767.

S. K. Lando, Lectures on generating functions, Student Mathematical Library, vol. 23, American Mathematical Society, Providence, RI, 2003.

A. Nolla de Celis, Dihedral groups and G -Hilbert schemes, Ph.D. thesis, Univ. of Warwick, 2008.

E. Sernesi, Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften, vol. 334, Springer-Verlag, Berlin, 2006.

Depositado:25 Sep 2012 08:47
Última Modificación:07 Feb 2014 09:30

Sólo personal del repositorio: página de control del artículo