Biblioteca de la Universidad Complutense de Madrid

Compact internal representation of dynamic situations: neural network implementing the causality principle


Makarov, Valeri A. y Villacorta-Atienza, José Antonio y Velarde, Manuel G. (2010) Compact internal representation of dynamic situations: neural network implementing the causality principle. Biological Cybernetics , 103 (4). pp. 285-297. ISSN 0340-1200

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial:


Animals for survival in complex, time-evolving environments can estimate in a "single parallel run" the fitness of different alternatives. Understanding of how the brain makes an effective compact internal representation (CIR) of such dynamic situations is a challenging problem. We propose an artificial neural network capable of creating CIRs of dynamic situations describing the behavior of a mobile agent in an environment with moving obstacles. The network exploits in a mental world model the principle of causality, which enables reduction of the time-dependent structure of real situations to compact static patterns. It is achieved through two concurrent processes. First, a wavefront representing the agent's virtual present interacts with mobile and immobile obstacles forming static effective obstacles in the network space. The dynamics of the corresponding neurons in the virtual past is frozen. Then the diffusion-like process relaxes the remaining neurons to a stable steady state, i.e., a CIR is given by a single point in the multidimensional phase space. Such CIRs can be unfolded into real space for execution of motor actions, which allows a flexible task-dependent path planning in realistic time-evolving environments. Besides, the proposed network can also work as a part of "autonomous thinking", i.e., some mental situations can be supplied for evaluation without direct motor execution. Finally we hypothesize the existence of a specific neuronal population responsible for detection of possible time-space coincidences of the animal and moving obstacles.

Tipo de documento:Artículo
Palabras clave:Internal representation; Neural networks; Situation models; Spatiotemporal dynamics; Modeling memory functions; Input compensation units; Freely moving rats; Entorhinal cortex; spatial map; Cells; Postsubiculum; Oscillators; Navigation; Elements
Materias:Ciencias > Matemáticas > Estadística aplicada
Código ID:16569

Aitkenhead MJ, McDonald AJS (2006) The state of play in machine/environment interactions. Artif Intell Rev 25: 247–276

Barry C, Lever C, Hayman R, Hartley T, Burton S, O’Keefe J, Jeffery K, Burgess N (2006) The boundary vector cell model of place cell firing and spatial memory. Rev Neurosci 17(1–2): 71–97

Berg BC (1993) Random walks in biology. Princeton University Press, Princeton

Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20: 193–219

Collett TS, Zeil J (1998) Places and landmarks: an arthropod perspective. In: Healy S (eds) Spatial representation in animals. Oxford University Press, Oxford, pp 18–53

Craik K (1943) The nature of explanation. Cambridge University Press, Cambridge

Cruse H (2003) The evolution of cognition—a hypothesis. Cogn Sci 27: 135–155

Cruse H, Hübner D (2008) Selforganizing memory: active learning of landmarks used for navigation. Biol Cybern 99: 219–236

Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052): 801–806

Holland O, Goodman R (2003) Robots with internal models—a route to machine consciousness?. J Conscious Stud 10: 77–109

Hesslow G (2002) Conscious thought as simulation of behaviour and perception. Trends Cogn Sci 6: 242–247

Keymeulen D, Decuyper J (1994) The fluid dynamics applied to mobile robot motion: the stream field method. In: Proceedings of the IEEE international conference on robotics and automation, pp 378–385

Kuhn S, Cruse H (2005) Static mental representations in recurrent neural networks for the control of dynamic behavioural sequences. Connect Sci 17: 343–360

Kühn S, Cruse H (2007) Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations. Biol Cybern 96: 471–486

Kühn S, Beyn WJ, Cruse H (2007) Modelling memory functions with recurrent neural networks consisting of input compensation units: I. Static situations. Biol Cybern 96: 455–470

Llinas RR (2001) I of the vortex: from neurons to self. MIT, second printing

Louste C, Liegeois A (2000) Near optimal robust path planning for mobile robots: the viscous fluid method with friction. J Intell Robot Syst 27: 99–112

Makarov VA, Song Y, Velarde MG, Hübner D, Cruse H (2008) Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biol Cybern 98: 371–395

McIntyre J, Zago M, Berthoz A, Lacquaniti F (2001) Does the brain model Newton’s laws?. Nat Neurosci 4: 693–694

Menzel R, Brandt R, Gumbert A, Komischke B, Kunze J (2000) Two spatial memories for honeybee navigation. Proc R Soc Lond B 267: 961–968

Mohan V, Morasso P (2007) Towards reasoning and coordinating action in the mental space. Int J Neural Syst 17: 329–341

Moser EI, Moser MB (2008) A metric for space. Hippocampus 18(12): 1142–1156

Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Ann Rev Neurosci 31: 69–89

Nekorkin VI, Velarde MG (2002) Synergetic phenomenon in active lattices: patterns, waves, solitons, chaos. Springer-Verlag, Berlin

Nekorkin VI, Makarov VA (1995) Spatial chaos in a chain of coupled bistable oscillators. Phys Rev Lett 74: 4819–4822

Nekorkin VI, Makarov VA, Kazantsev VB, Velarde MG (1997) Spatial disorder and pattern formation in lattices of coupled elements. Physica D 100: 330–342

O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1): 171–175

Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2: 661–670

Savelli F, Yoganarasimha D, Knierim JJ (2008) Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18(12): 1270–1282

Schmidt GK, Azarm K (1992) Mobile robot navigation in a dynamic world using an unsteady diffusion equation strategy. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 642–647

Sepulchre JA, MacKay RS (1997) Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators. Nonlinearity 10: 679–713

Sharma J, Dragoi V, Tenenbaum JB, Miller EK, Sur M (2003) V1 neurons signal acquisition of an internal representation of stimulus location.. Science 300: 1758–1763

Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322(5909): 1865–1868

Steinkuhler U, Cruse H (1998) A holistic model for an internal representation to control the movement of a manipulator with redundant degrees of freedom. Biol Cybern 79: 457–466

Svensson H, Morse A, Ziemke T (2009) Representation as internal simulation: a minimalistic robotic model. In: Proceedings of the CogSci’09, 2890–2895

Taube JS, Muller RU, Ranck JB (1990a) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10: 420–435

Taube JS, Muller RU, Ranck JB (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10: 436–447

Toussaint M (2006) A sensorimotor map: modulating lateral interactions for anticipation and planning. Neural Comput 18: 1132–1155

Umiltá MA, Kohler E, Gallese V, Fogassi L, Fadiga L, Keysers C, Rizzolatti G (2001) “I know what you are doing”: a neurophysiological study. Neuron 32: 91–101

Vergassola M, Villermaux E, Shraiman B (2007) Infotaxis as a strategy for searching without gradients. Nature 445: 406–409

Depositado:01 Oct 2012 09:53
Última Modificación:27 Jun 2016 16:22

Sólo personal del repositorio: página de control del artículo