Complutense University Library

Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair

Fernández de Bobadilla de Olarzábal, Javier José and Luengo Velasco, Ignacio and Melle Hernández, Alejandro and Némethi , A. (2007) Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair. In Real and complex singularities. Trends in Mathematics . Birkhauser Boston, Birkhauser Boston, 675 Massachusetts Ave, Cambridge, Ma 02139-2333 Usa, pp. 31-45. ISBN 3-7643-7775-5

[img] PDF
Restricted to Repository staff only until 31 December 2020.

164kB

Official URL: http://www.springerlink.com/content/rr01708165063370/

View download statistics for this eprint

==>>> Export to other formats

Abstract

It is a very old and interesting open problem to characterize those collections of embedded topological types of local plane curve singularities which may appear as singularities of a projective plane curve C of degree d. The goal of the present article is to give a complete (topological) classification of those cases when C is rational and it has a unique singularity which is locally irreducible (i.e., C is unicuspidal) with one Puiseux pair.

Item Type:Book Section
Additional Information:Conference: 8th Workshop on Real and Complex Singularities Location: Luminy, France Date: Jul. 19-23, 2004
Uncontrolled Keywords:Cuspidal rational plane curves; Logarithmic Kodaira dimension
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:16589
References:

Fernández de Bobadilla J., Luengo I., Melle-Hernández A., Némethi A.: On rational cuspidal projective plane curves, preprint at arXiv:math.AG/0410611.

Dimca, A.: Singularities and Topology of Hypersurfaces, Universitext, Springer-Verlag, New York, 1992.

Fujita, T.: On the topology of non-complete algeraic surfaces, J. Fac. Sci. Univ. Tokyo (Ser1A), 29 (1982), 503-566.

Kashiwara, H.: Fonctions rationelles de type (0,1) sur le plan projectif complexe, Osaka J. Math., 24 (1987), 521-577.

Namba, M.: Geometry of projective algebraic curves. Monographs and Textbooks in Pure and Applied Mathematics, 88 Marcel Dekker, Inc., New York, 1984.

Orevkov, S. Yu.: On rational cuspidal curves, I. Sharp estimate for degree via multiplicities, Math. Ann. 324 (2002), 657-673.

Matsuoka, T. and Sakai, F.: The degree of of rational cuspidal curves, Math. Ann., 285 (1989), 233-247.

Tono, K.: On rational unicuspidal plane curves with logarithmic Kodaira dimension one, preprint.

Tsunoda, Sh.: The complements of projective plane curves, RIMS-Kôkyûroku, 446 (1981), 48-56.

Vajda, S.: Fibonacci and Lucas numbers, and the Golden Section: Theory and Applications, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press New York, 1989.

Varchenko, A.N.: On the change of discrete characteristics of critical points of functions under deformations, Uspekhi Mat. Nauk, 38:5 (1985), 126-127.

Varchenko, A. N. : Asymptotics of integrals and Hodge structures.Science rewievs:current problems in mathematics 1983. 22, 130-166; J. Sov. Math. 27 (1984).

Wall, C.T.C.: Singular Points of Plane Curves, London Math. Soc. Student Texts 63, Cambridge University Press, 2004.

Yoshihara, Y.: Rational curves with one cusp (in Japanese), Sugaku, 40 (1988), 269–271.

Deposited On:02 Oct 2012 08:21
Last Modified:02 Oct 2012 08:21

Repository Staff Only: item control page