Complutense University Library

Global homeomorphisms and covering projections on metric spaces

Gutú, Olivia and Jaramillo Aguado, Jesús Ángel (2007) Global homeomorphisms and covering projections on metric spaces. Mathematische Annalen, 338 (1). pp. 75-95. ISSN 0025-5831

[img] PDF
Restricted to Repository staff only until 2020.

299kB

Official URL: http://www.springerlink.com/content/t2220x2731532124/fulltext.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

For a large class of metric spaces with nice local structure, which includes Banach-Finsler manifolds and geodesic spaces of curvature bounded above, we give sufficient conditions for a local homeomorphism to be a covering projection. We first obtain a general condition in terms of a path continuation property. As a consequence, we deduce several conditions in terms of path- liftings involving a generalized derivative, and in particular we obtain an extension of Hadamard global inversion theorem in this context. Next we prove that, in the case of quasi-isometric mappings, some of these sufficient conditions are also necessary. Finally, we give an application to the existence of global implicit functions.

Item Type:Article
Uncontrolled Keywords:Implicit Function Theorems; Manifolds; Mappings
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:16611
References:

Ambrose, W. Parallel translation of Riemannian curvature. Ann. of Math. 64, 337–363 (1956).

Banach S. and Mazur S. ¨Uber mehrdeutige stetige abbildungen. Studia Math. 5, 174–178 (1934).

Blot J. On global implicit functions. Nonlinear Anal. Theor., Meth. & App. 17 No. 10, 947–959 (1991).

Bridson M.R and Haefliger A. Metric spaces of non-positive curvature. Springer Verlag(1964).

Browder F.E. Covering spaces, fiber spaces and local homeomorphism. Duke Math. J. 21,329–336, (1954).

Cacciopoli, R. Un principio di inversione per le corrispondenze funzionali e sue applicacioni

alle equazioni alle deivate parziali. Atti Accad. Naz. Lincei 16, 392–400, (1932).

De Cecco, G. and Palmieri, G. LIP manifolds: from metric to Finslerian structure. Math.Z. 218, 223–237, (1995).

Gutú, O. and Jaramillo, J. A. Fibrations on Banach manifolds. Pac. J. Math. 215, 313–329 (2004).

Hadamard, J. Sur les transformations ponctuelles. Bull. Soc. Math. France 34, 71–84 (1906).

Ichiraku S. A note on global implicit function theorems. IEEE Trans. Circ. Syst. 32 No. 5,503–505 (1985).

Ioffe A.D. Global surjection and global inverse mapping theorems in Banach spaces. Ann.New York Acad. Sci. 491, 181–188 (1987).

John F. On quasi-isometric maps I. Comm. Pure Appl. Math. 21, 77–110 (1968).

Katriel G. Mountain-pass theorems and global homeomorphism theorems. Ann. Inst. Henri Poincaré, Analyse Non Linéaire 11 No. 2, 189–209 (1994).

Lang S. Fundaments of Differential Geometry. Graduate Text in Mathematics, 191. Springer

Lévy, P. Sur les fonctions des lignes implicites. Bull. Soc. Math. France 48, 13–27 (1920).

[16] Luukkainen, J. and Väisälä, J. Elements of Lipschitz Topology. Ann. Acad. Sci. Fenn. 3,85–122, (1977).

Nollet S. and Xavier F. Global inversion via the Palais–Smale condition. Disc. and Cont. Dynam. Syst. 8 No.1, 17–28, (2002).

Palais R.S. Natural operations on differential forms. Trans. Amer. Math. Soc. 92, 125–141,(1959).

Palais R.S. Homotopy Theory of infinite-dimensional manifolds. Topology 5, 1–16, (1966).

Palais R.S. Lusternik-Schnirelman Theory on Banach manifolds. Topology 5, 115–132,(1966).

parthasarathy, T. On global univalence theorems. Lecture Notes in Math. 977. Springer-Verlag, (1983).

Plastock R. Homeomorphisms between Banach spaces. Trans. Amer. Math. Soc. 200, 169–183 (1974).

Pourciau B. Hadamard’s Theorem for locally Lipschitzian maps. J. Math. Anal. Appl. 85, 279–285 (1982).

[24Pourciau B. Global Invertibility of Nonsmooth Mappings. J. Math. Anal. Appl. 131, 170–179(1988).

Rabier P. Ehresmann fibrations and Palais–Smale conditions for morphism of Finsler Manifolds.Ann. of Math. 146, 547–691 (1997).

Radulescu M. and Radulescu S. Global inversion theorems and applications to differential equations. Nonlinear Anal., Theor., Meth. & Appl. 4 No. 4, 951–963, (1980).

RheinboldtW. Local mapping relations and global implicit functions theorems. Trans. Amer.Math. Soc. 138, 183–198 (1969).

Schwartz J. T. Nonlinear Functional Analysis. Gordon and Breach, (1969).

Spanier E.H. Algebraic Topology. McGraw Hill, (1966).

Wolf, J. A. and Griffiths, P. A. Complete maps and differentiable coverings. Michigan Math. J. 10, 253–255 (1963).

Zampieri G. Diffeomorphism with Banach spaces domains. Nonlinear Anal., Theor., Meth.& Appl. 19 No. 10, 923–932 (1992).

Deposited On:04 Oct 2012 08:53
Last Modified:07 Feb 2014 09:32

Repository Staff Only: item control page