Biblioteca de la Universidad Complutense de Madrid

Higher order dual varieties of generically k-regular surfaces

Impacto

Mallavibarrena Martínez de Castro, Raquel y Lanteri, Antonio (2000) Higher order dual varieties of generically k-regular surfaces. Archiv der Mathematik, 75 (1). pp. 75-80. ISSN 0003-889X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

84kB

URL Oficial: http://www.springerlink.com/content/798frv8177k0eq90/fulltext.pdf




Resumen

We prove that, if a smooth complex projective surface S subset of P-N is k-regular, then its k-th order dual variety has the expected dimension, except if S is the k-th Veronese surface. This answers positively a conjecture stated in a previous paper.


Tipo de documento:Artículo
Palabras clave:Adjunction
Materias:Ciencias > Matemáticas > Álgebra
Código ID:16625
Referencias:

M. C. BELTRAMETTI and A. J. SOMMESE, On the preservation of k -very ampleness under adjunction. Math. Z. 212, 257–284 (1993).

M. C. BELTRAMETTI and A. J. SOMMESE, The Adjunction Theory of Complex Projective Varieties. Exposition Math. 16, Berlin 1995.

P. IONESCU, Embedded projective varieties with small invariants. Algebraic Geometry, Proc. Bucharest, 1982. In: L. Bădescu et al., eds., LNM 1056, 142–187. Berlin-Heidelberg-New York 1984.

S. L. KLEIMAN, Tangency and Duality. In: Proc. 1984 Vancouver Conference in Algebraic Geometry, J. Carrell et al., eds., Can. Math. Soc. Conf. Proc. 6, 163–225 (1986).

A. LANTERI and R. MALLAVIBARRENA, Higher order dual varieties of projective surfaces. Comm. Algebra 27, 4827–4851 (1999).

I. REIDER, Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. Math. 127, 309–316 (1988).

A. J. SOMMESE and A. VAN DE VEN, On the adjunction mapping. Math. Ann. 278, 593–603 (1987).

Depositado:04 Oct 2012 08:38
Última Modificación:07 Feb 2014 09:32

Sólo personal del repositorio: página de control del artículo