Complutense University Library

Higher order dual varieties of generically k-regular surfaces

Mallavibarrena Martínez de Castro, Raquel and Lanteri, Antonio (2000) Higher order dual varieties of generically k-regular surfaces. Archiv der Mathematik, 75 (1). pp. 75-80. ISSN 0003-889X

[img] PDF
Restricted to Repository staff only until 31 December 2020.

84kB

Official URL: http://www.springerlink.com/content/798frv8177k0eq90/fulltext.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

We prove that, if a smooth complex projective surface S subset of P-N is k-regular, then its k-th order dual variety has the expected dimension, except if S is the k-th Veronese surface. This answers positively a conjecture stated in a previous paper.

Item Type:Article
Uncontrolled Keywords:Adjunction
Subjects:Sciences > Mathematics > Algebra
ID Code:16625
References:

M. C. BELTRAMETTI and A. J. SOMMESE, On the preservation of k -very ampleness under adjunction. Math. Z. 212, 257–284 (1993).

M. C. BELTRAMETTI and A. J. SOMMESE, The Adjunction Theory of Complex Projective Varieties. Exposition Math. 16, Berlin 1995.

P. IONESCU, Embedded projective varieties with small invariants. Algebraic Geometry, Proc. Bucharest, 1982. In: L. Bădescu et al., eds., LNM 1056, 142–187. Berlin-Heidelberg-New York 1984.

S. L. KLEIMAN, Tangency and Duality. In: Proc. 1984 Vancouver Conference in Algebraic Geometry, J. Carrell et al., eds., Can. Math. Soc. Conf. Proc. 6, 163–225 (1986).

A. LANTERI and R. MALLAVIBARRENA, Higher order dual varieties of projective surfaces. Comm. Algebra 27, 4827–4851 (1999).

I. REIDER, Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. Math. 127, 309–316 (1988).

A. J. SOMMESE and A. VAN DE VEN, On the adjunction mapping. Math. Ann. 278, 593–603 (1987).

Deposited On:04 Oct 2012 08:38
Last Modified:07 Feb 2014 09:32

Repository Staff Only: item control page