Complutense University Library

Fibrations on Banach manifolds

Gutú, Olivia and Jaramillo Aguado, Jesús Ángel (2004) Fibrations on Banach manifolds. Pacific Journal of Mathematics, 215 (2). pp. 313-329. ISSN 0030-8730

[img] PDF
Restricted to Repository staff only until 2020.

292kB

Official URL: http://web.msp.berkeley.edu/pjm/2004/215-2/pjm-v215-n2-p.pdf#page=117

View download statistics for this eprint

==>>> Export to other formats

Abstract

Let f be a split submersion between paracompact Banach manifolds. We obtain here various conditions for f to be a fiber bundle. First, we give general conditions in terms of path-liftings. As a consequence, we deduce several criteria: For example, f is a fiber bundle provided it satisfies either some topological requirements ( such as being a proper or a closed map) or, in the case of Finsler manifolds, some metric requirements (such as Hadamard integral condition).


Item Type:Article
Uncontrolled Keywords:Fiber bundle; Banach manifold; path-lifting; Finsler space
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:16634
References:

R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, Applied Mathematical Sciences, 75, Springer-Verlag, 1988, MR 0960687 (89f:58001), Zbl 0875.58002.

M.S. Berger and R.A. Plastock, On the singularities of nonlinear Fredholm operators of positive index, Proc. Amer. Math. Soc., 79(2) (1980), 373–380, MR 0565342 (81d:58011), Zbl 0444.47044.

F.E. Browder, Covering spaces, fiber spaces and local homeomorphism, Duke Math. J., 21 (1954), 329–336, MR 0062431 (15,978a), Zbl 0056.16602.

C.J. Earle and J. Eells, Foliations and fibrations, J. Differential Geom., 1 (1967), 61–69, MR 0215320 (35 #6161), Zbl 0162.54101.

C. Ehresmann, Les connexions infinit´esimales dans un espace fibr´e diff´erentiable, Colloque de Topologie, Bruxelles, 1950, Georges Thone, Li`ege; Masson et Cie., Paris, 1951, 29–55, MR 0042768 (13,159e), Zbl 0054.07201.

R. Engelking, General Topolgy, PWN Polish Scientific Publishers, Warszawa, 1977.

O. Gut´u and J.A. Jaramillo, Global homeomorphisms and covering projections on metric spaces. Preprint.

J. Hadamard, Sur les tranformations ponctuelles, Bull. Soc. Math. France, 34 (1906), 71–84.

M.W. Hirsch, Differential Topology, Graduate Texts in Mathematics, 33, Springer- Verlag, 1976, MR 0448362 (56 #6669), Zbl 0356.57001.

R.S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology, 5 (1966), 115–132, MR 0259955 (41 #4584), Zbl 0143.35203.

T. Parthasarathy, On Global Univalence Theorems, Lecture Notes in Mathematics, 977, Springer-Verlag, 1983, MR 0694845 (84m:26019), Zbl 0506.90001.

R.A. Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc., 200 (1974), 169–183, MR 0356122 (50 #8593), Zbl 0291.54009.

-----Nonlinear mappings that are globally equivalent to a projection, Trans. Amer. Math. Soc., 275(1) (1983), 373–380, MR 0678357 (84b:58017), Zbl 0525.47047.

P.J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler Manifolds, Ann. of Math., 146 (1997), 647–691, MR 1491449 (98m:58020), Zbl 0919.58003.

W.C. Rheinboldt, Local mapping relations and global implicit functions theorems, Trans. Amer. Math. Soc., 138 (1969), 183–198, MR 0240644 (39 #1990),

Zbl 0175.45201.

E.H. Spanier, Algebraic Topology, McGraw Hill, 1966, MR 0210112 (35 #1007), Zbl 0145.43303.

Deposited On:08 Oct 2012 08:00
Last Modified:07 Feb 2014 09:33

Repository Staff Only: item control page