Biblioteca de la Universidad Complutense de Madrid

Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the Ferret (Mustela putorius)


Makarov, Valeri A. y Schmidt, Kerstin E. y Castellanos, Nazareth P. y Innocenti, Giorgio M. y López-Aguado, Laura (2008) Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the Ferret (Mustela putorius). Cerebral Cortex , 18 (8 ). pp. 1951-1960. ISSN 1047-3211

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial:


To study how the visual areas of the 2 hemispheres interact in processing visual stimuli we have recorded local field potentials in the callosally connected parts of areas 17 and 18 of the ferret during the presentation of 3 kinds of stimuli: 2.5 degrees squares flashed for 50 ms randomly in the visual field (S1), 4 full-field gratings differing in orientation by 45 degrees and identical in the 2 hemifields (S2) and gratings as above but whose orientation and/or direction of motion differed by 90 degrees in the 2 hemifields (S3). The gratings remained stationary for 0.5 s and then moved in 1 of the 2 directions perpendicular to their orientation for 3 s. We compared the responses in baseline conditions with those obtained whereas the contralateral visual areas were inactivated by cooling. Cooling did not affect the responses to S1 but it modified those to S2 and to S3 generally increasing early components of the response while decreasing later components. These findings indicate that interhemispheric processing is restricted to visual stimuli which achieve spatial summation and that it involves complex inhibitory and facilitatory effects, possibly carried out by interhemispheric pathways of different conduction velocity.

Tipo de documento:Artículo
Palabras clave:Interhemispheric eeg coherence; Split-chiasm cats; Corpus-callosum; Cortical networks; Apparent motion; Auditory-cortex; Neurons; Connections; Brain; Synchronization; Cooling; Corpus callosum; Ferret; Interhemispheric interactions; Visual cortex
Materias:Ciencias > Matemáticas > Funciones (Matemáticas)
Código ID:16638

Anninos PA, Cook ND. 1988. Neural net simulation of the corpus callosum. Int J Neurosci. 38:381--391.

Antonini A, Berlucchi G, Lepore F. 1983. Physiological organization of callosal connections of a visual lateral suprasylvian cortical area in the cat. J Neurophysiol. 49:902--921.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B. 57:289--300.

Berbel P, Innocenti GM. 1988. The development of the corpus callosum in cats: a light- and electron-microscopic study. J Comp Neurol. 276:132--156.

Berlucchi G. 1972. Anatomical and physiological aspects of visual functions of corpus callosum. Brain Res. 37:371--392.

Berlucchi G, Gazzaniga MS, Rizzolatti G. 1967. Microelectrode analysis of transfer of visual information by the corpus callosum. Arch Ital Biol. 105:583--596.

Berlucchi G, Rizzolatti G. 1968. Binocularly driven neurons in visual cortex of split-chiasm cats. Science. 159:308--310.

Bloom JS, Hynd GW. 2005. The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol Rev. 15:59--71.

Carmeli C, Knyazeva MG, Innocenti G, De Feo O. 2005. Assessment of EEG synchronization based on state-space analysis. Neuroimage. 25:339--354.

Carmeli C, Lopez-Aguado L, Schmidt K, De Feo O, Innocenti GM. 2007. A novel interhemispheric interaction: modulation of neuronal cooperativity in the visual areas. PloSONE.

Cissé Y, Grenier F, Timofeev I, Steriade M. 2003. Electrophysiological properties and input-output organization of callosal neurons in cat association cortex. J Neurophysiol. 89:1402--1413.

Corballis MC. 1995. Visual integration in the split brain. Neuropsychologia. 33:937--959.

Engel AK, König P, Kreiter AK, Singer W. 1991. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science. 252:1177--1179.

Fabri M, Manzoni T. 1996. Glutamate decarboxylase immunoreactivity in corticocortical projecting neurons of rat somatic sensory cortex. Neuroscience. 72:435--448.

Fabri M, Polonara G, Mascioli G, Paggi P, Salvolini U, Manzoni T. 2006. Contribution of the corpus callosum to bilateral representation of the trunk midline in the human brain: an fMRI study of callosotomized patients. Eur J Neurosci. 23:3139--3148.

Ferster D. 1986. Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. J Neurosci. 6:1284--1301.

Galuske RA, Schmidt KE, Goebel R, Lomber SG, Payne BR. 2002. The role of feedback in shaping neural representations in cat visual cortex. Proc Natl Acad Sci USA. 99:17083--17088.

Guillemot J-P, Paradis M-C, Samson A, Ptito M, Richer L, Lepore F. 1993. Binocular interaction and disparity coding in area 19 of visual cortex in normal and split-chiasm cats. Exp Brain Res. 94:405--417.

Houzel J-C, Milleret C, Innocenti G. 1994. Morphology of callosal axons interconnecting areas 17 and 18 of the cat. Eur J Neurosci. 6:898--917.

Hubel DH, Wiesel TN. 1967. Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. J Neurophysiol. 30:1561--1573.

Innocenti GM. 1980. The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat. Arch Ital Biol. 118:124--188.

Innocenti GM. 1986. General organization of callosal connections in the cerebral cortex. In: Jones EG, Peters A, editors. Cerebral cortex, Vol. 5. New York: Plenum. p. 291--353.

Innocenti GM, Aggoun-Zouaoui D, Lehmann P. 1995. Cellular aspects of callosal connections and their development. Neuropsychologia. 33:961--987.

Innocenti GM, Manger PR, Masiello I, Colin I, Tettoni L. 2002. Architecture and callosal connections of visual areas 17,18,19 and 21 in the ferret (Mustela putorius). Cereb Cortex. 12: 411--422.

Innocenti GM, Manzoni T, Spidalieri G. 1972. Peripheral and transcallosal reactivity of neurones within SI and SII cortical areas. Segmental divisions. Arch Ital Biol. 110:415--443.

Innocenti GM, Manzoni T, Spidalieri G. 1973. Relevance of the callosal transfer in defining the peripheral reactivity of somesthetic cortical neurones. Arch Ital Biol. 111:187--221.

Innocenti GM, Price DJ. 2005. Exuberance in the development of cortical networks. Nat Rev Neurosci. 6:955--965.

Karayannis T, Huerta-Ocampo I, Capogna M. 2007. GABAergic and pyramidal neurons of deep cortical layers directly receive and differently integrate callosal input. Cereb Cortex. 17: 1213--1226.

Kaur S, Lazar R, Metherate R. 2004. Intracortical pathway determine breadth of subthreshold frequency receptive fields in primary auditory cortex. J Neurophysiol. 91:2551--2567.

Kiper DC, Knyazeva MG, Tettoni L, Innocenti GM. 1999. Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets. J Neurophysiol. 82:3082--3094.

Kisvárday ZF, Kim D-S, Eysel UT, Bonhoeffer T. 1994. Relationship the orientation map in cat visual cortex. Eur J Neurosci. 6: 1619--1632.between lateral inhibitory connections and the topography of the orientation map in cat visual cortex. Eur J Neurosci. 6: 1619--1632.

Kitzes LM, Doherty D. 1994. Influence of callosal activity on units in the auditory cortex of ferret (Mustela putorius). J Neurophysiol. 71:1740--1751.

Knyazeva MG, Fornari E, Meuli R, Innocenti G, Maeder P. 2006. Imaging a synchronous neuronal assembly in the human visual brain. Neuroimage. 29:593--604.

Knyazeva MG, Kiper DC, Vildavsky VJ, Despland PA, Maeder-Ingvar M, Innocenti GM. 1999. Visual stimulus-dependent changes in interhemispheric EEG coherence in humans. J Neurophysiol. 82:3095--3107.

LaMantia A-S, Rakic P. 1990. Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. J Comp Neurol. 291:520--537.

Langsrud O. 2002. 50-50 multivariate analysis of variance for collinear responses. The Statistician. 51:305--317.

Lepore F, Guillemot J-P. 1982. Visual receptive field properties of cells innervated through the corpus callosum in the cat. Exp Brain Res. 46:413--424.

Li L, Ebner F. 2006. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering response threshold. Exp Brain Res. 172:397--415.

Lomber SG, Cornwell P, Sun J-S, MacNeil MA, Payne BR. 1994. Reversible inactivation of visual processing operations in middle suprasylvian cortex of the behaving cat. Proc Natl Acad Sci USA. 91:2999--3003.

Lomber SG, Payne BR, Horel JA. 1999. The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function. J Neurosci Methods. 86:179--194.

Malinowski ER. 1991. Factor analysis in chemistry, 2nd ed.. New York: John Wiley & Sons.

Manger PR, Kiper D, Masiello I, Murillo L, Tettoni L, Hunyadi Z, Innocenti GM. 2002. The representation of the visual field in three extrastriate areas of the ferret (Mustela putorius) and the relationship of retinotopy and field boundaries to callosal connectivity. Cereb Cortex. 12:423--437.

Mariñoo J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M. 2005. Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci. 8:194--201.

McCourt ME, Thalluri J, Henry GH. 1990. Properties of area 17/18 border neurons contributing to the visual transcallosal pathway in the cat. Vis Neurosci. 5:83--98.

Milleret C, Houzel J-C. 2001. Visual interhemispheric transfer to areas 17 and 18 in cats with convergent strabismus. Eur J Neurosci. 13:137--152.

Milleret C, Houzel JC, Buser P. 1994. Pattern of development of the callosal transfer of visual information to cortical areas 17 and 18 in the cat. Eur J Neurosci. 6:193--202.

Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y. 2003. Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron. 37:663--680.

Munk MHJ, Nowak LG, Nelson JI, Bullier J. 1995. Structural basis of cortical synchronization. II. Effects of cortical lesions. J Neurophysiol. 74:2401--2414.

Naikar N, Corballis M. 1996. Perception of apparent motion across the retinal midline following commissurotomy. Neuropsychologia. 34:297--309.

Nakamura H, Chaumon M, Kljin F, Innocenti GM. Forthcoming. Dynamic properties of the representation of the visual field midline in the primary visual areas of the ferret (Mustela Putorius). Cereb Cortex.

Payne BR, Siwek DF, Lomber SG. 1991. Complex transcallosal interactions in visual cortex. Vis Neurosci. 6:283--289.

Peters A, Payne BR, Josephson K. 1990. Transcallosal non-pyramidal cell projections from visual cortex in the cat. J Comp Neurol. 302:124--142.

Pillow J, Rubin N. 2002. Perceptual completion across the vertical meridian and the role of early visual cortex. Neuron. 33:805--813.

Ptito M. 2003. Functions of the corpus callosum as derived from splitchiasm studies in cats. In: Zaidel E, Iacoboni M, editors. The parallel brain: the cognitive neuroscience of the corpus callosum. Cambridge (MA): Massachusetts Institute of Technology Press. p. 139--153.

Ramachandran VS, Cronin-Golomb A, Myers JJ, et al. 1986. Perception of apparent motion by commissurotomy patients. Nature. 320:358--359.

Rochefort NL, Buzás P, Kisvárday ZF, Eysel UT, Milleret C. 2007. Layout of transcallosal activity in cat visual cortex revealed by optical imaging. Neuroimage. 36:804--821.

Rose M, Sommer T, Büchel C. 2006. Integration of local features to a global percept by neural coupling. Cereb Cortex. 16:1522--1528.

Schmidt KE, Kim D-S, Singer W, Bonhoeffer T, Löwel S. 1997. Functional specificity of long-range intrinsic and interhemispheric connections in the visual cortex of strabismic cats. J Neurosci. 17:5480--5492.

Schmidt KE, Lomber SG, Innocenti GM. 2005. Impact of interhemispheric connections on orientation preference maps in areas 17 and 18 of the ferret. Soc Neurosci. [Abstr. 508.13].

Shatz C. 1977. Abnormal interhemispheric connections in the visual system of Boston Siamese cats: a physiological study. J Comp Neurol. 171:229--246.

Tettoni L, Gheorghita-Baechler F, Bressoud R, Welker E, Innocenti GM. 1998. Constant and variable of axonal phenotype in cerebral cortex. Cereb Cortex. 8:543--552.

Toyama K, Matsunami K, Ohno T, Tokashiki S. 1974. An intracellular study of neuronal organization in the visual cortex. Exp Brain Res. 21:45--66.

Depositado:09 Oct 2012 10:14
Última Modificación:28 Jun 2016 14:53

Sólo personal del repositorio: página de control del artículo