Complutense University Library

Higher order dual varieties of projective surfaces


Mallavibarrena Martínez de Castro, Raquel and Lanteri, Antonio (1999) Higher order dual varieties of projective surfaces. Communications in Algebra, 27 (10). pp. 4827-4851. ISSN 0092-7872

[img] PDF
Restringido a Repository staff only hasta 31 December 2020.


Official URL:


We investigate higher order dual varieties of projective manifolds whose osculatory behavior is the best possible, in particular, for a k-jet ample surface we prove the nondegeneratedness of the k-th dual variety and for 2-regular surfaces we investigate the degree of the second dual variety.

Item Type:Article
Uncontrolled Keywords:surface (complex projective); jet bundles; k-jet ampleness; k-regularity; duality; Scrolls; Adjunction
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:16639

E. Arbarello, M. Cornalba, Ph. Griffiths, and J . Harris, Geometry of Algebmic Curves,Volume I , Springer-Verlag, New York, 1985.

E. Ballico, A characterization of the Veronese surface, Proc. Amer. Math. Soc. 105 (1989), 531-534.

E. Ballico, R. Piene, and H.S. Tai, A chamcterization of balanced mtiontrl normal surface scrolls in terns of their osculating spaces, II, Math. Scand. 70 (1992), 204-206.

A. Beauville, L'application canonique pour les surfaces de type g i n h l , Invent. Math. 55 (1979), 121-140.

M. Beltrametti and A. J. Sommese, On k-spannedness for projective surfaces, Algebraic Geometry, Proc. L'Aquila, 1988 (A. J. Sommese et al., eds.), Lecture Notes in Math., vol. 1417, Springer, 1990, pp. 24-51.

M.Beltrametti and A.J.Sommese, On k-jet ampleness, Complex Analysis and Geometry (V. Ancona and A. Silva, eds.), The Univ. Series in Math., Plenum Press, 1993, pp. 355-376.

M. Beltrametti and A. J. Sommese , On the preservation of k-very amplenees under adjunction, Math. Z. 212 (1993), 257-283.

M. Beltrametti and A. J. Sommese, The Adjunction Theory of Complez Projective Varieties, Expositions in Math., vol. 16, De Gruyter, 1995.

A. Biancofiore and E. L. Livorni, On the genw of a hyperplane section of a geometrically ruled surface, Ann. di Mat. Pura ed Appl. (IV) 147 (1987), 173-185.

M. Demazure, Surfaces de Del Pezzo, I-V, Sdminaire sur les Singularit& des Surfaces, Lect. Notes in Math., vol. 777, 1980, pp. 23-69.

L. Ein, Varieties with small dual varieties, I, Invent. Math. 86 (1986), 63-74.

W. Fulton, S. Kleiman, R. Piene and H. Tai, Some eztrinsic chamcterizatioru of the projective space, Bull. Soc. Math. fiance 113 (1985), 205-210.

Ph. Griffiths and J. Harris, Principles of Algebmic Geometry, Wiley-Interscience, New York, 1978.

R. Hartshorne, Algebmic Geometry, Springer - Verlag, New York - Heidelberg - Berlin, 1977.

P. Ionescu, Embedded projective varieties with small invariants, Algebraic Geometry, Proc. Bucharest, 1982 (L. Bgdescu et al., eds.), Lecture Notes in Math., vol. 1056, Springer, 1984, pp. 142-187.

S. L. Kleiman, Tangency and duality, Proc. 1984 Vancouver Conference in Algebraic Geometry (J. Carrel1 et al., eds.), Canad. Math. Soc. Conf. Proc., vol. 6, 1986, pp. 163-225.

A. Lanteri, On the class of a projective algebraic surface, Arch. Math. 45 (1985), 79-85.

A. Lanteri, On the class of an elliptic projective surface, Arch. Math. 64 (1995), 359-368.

A. Lanteri and F. Tonoli, Ruled surfaces with small class, Comm. Alg. 24 (1996), 3501-3512.

A. Lanteri, M. Palleschi and A. J. Sommese, On the discriminant locw of an ample and spanned line bundle, J. reine angew. Math. 477 (1996), 199-219.

R. Mallavibarrena, R. Piene, Dudity for elliptic normal surface scrolls, Enumerative Algebraic Geometry (S. L. Kleiman and A. Thorup, eds.), Contemporary Mathematics, vol. 123, Amer. Math. Soc., 1991, pp. 149-160.

G. Ottaviani, Varieth proiettive di piccola codimensione, Notes of INDAM course, 1st. Naz. di Aka Matem., Roma, 1995.

R. Piene, Numerical characters of a curve in projective space, Real and Complex Singularities (P. Holm, ed.), Proc. Symposium in Math., Oslo, 1976, Sijthoff and Noordhoff, 1977, pp. 475-495.

R. Piene, A note on higher order dual varieties, with an application to scrolls, Singularities (P. Orlik, ed.), Proc. Symposia Pure Math., vol. 40, Amer. Math. Soc., 1983, pp. 335-342.

R. Piene and G. Sacchiero, Duality for mtional normal scrolls, Comm. Alg. 12 (1984), 1041-1066.

Deposited On:08 Oct 2012 07:56
Last Modified:07 Feb 2014 09:33

Repository Staff Only: item control page