Complutense University Library

The Chow groups of Hilb 4 P 2 and a base for A 2 ,A 3 ,A 2d−2 ,A 2d−3 of Hilb d P

Mallavibarrena Martínez de Castro, Raquel (1986) The Chow groups of Hilb 4 P 2 and a base for A 2 ,A 3 ,A 2d−2 ,A 2d−3 of Hilb d P. Comptes Rendus de l'Académie des Sciences. Série I. Mathématique , 303 (13). pp. 647-650. ISSN 0764-4442

[img] PDF
Restricted to Repository staff only until 31 December 2020.

359kB

Official URL: http://gallica.bnf.fr/ark:/12148/bpt6k5744587p/f71.image.r=COMPTES%20RENDUS%20DE%20L%20ACADEMIE%20DES%20SCIENCES%20SERIE%20I-MATHEMATIQUE.langES

View download statistics for this eprint

==>>> Export to other formats

Abstract

G. Ellingsrud and S. A. Strømme [Invent. Math. 87 (1987), no. 2, 343–352; see the following review] have proved that the Chow group of the Hilbert scheme Hilb d P 2 is free and have computed the ranks of its homogeneous parts A i (Hilb d P 2 ) . In the present note, the author introduces a family of cycles in Hilb d P 2 and conjectures this family to be a basis of the Chow group. In the case d=3 , this follows from a paper by G. Elencwajg and P. Le Barz [C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 12, 635–638; MR0814963 (87c:14006)]. Here the conjecture is proved in case d=4 , and for any d , in the cases i=2,3,2d−3, 2d−2 . The proof consists in calculations of intersection matrices.

Item Type:Article
Uncontrolled Keywords:Chow groups and rings
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:16643
References:

G. ELENCWAJG et P. LE BARZ, Une base de Pic (Hilb1/2 P2), Comptes rendus, 297, série I, 1983, p. 175-178.

G. ELENCWAJG et P. LE BARZ, Détermination de l'anneau de Chow de Hilb 3 P2, Comptes rendus, 301,série I, 1985, p. 635-638.

[3] G. ELLINSGRUD et S. A. STRÇMME, On the homology ofthe Hilbert scheme of points in the plane, Preprint Séries, n° 13, Universitet i Oslo, 1984.

P. LE BARZ, Validité de certaines formules de géométrie énumérative, Comptes rendus, 289, série A, 1979,p. 755-758.

R. MALLAVIBARRENA, Validité de la formule classique des trisécants stationnaires (à paraître).

Deposited On:08 Oct 2012 07:48
Last Modified:08 May 2013 17:03

Repository Staff Only: item control page