Biblioteca de la Universidad Complutense de Madrid

Radiation dynamics in homogeneous plasma

Impacto

Escobedo, M. y Herrero, Miguel A. y Velázquez, J.J. L. (1999) Radiation dynamics in homogeneous plasma. Physica D-Nonlinear Phenomena, 126 (3-4). pp. 236-260. ISSN 0167-2789

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

230kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0167278998002553




Resumen

We study in this paper the asymptotic behaviour of solutions of a nonlinear Fokker-Plank equation. Such an equation describes the evolution of radiation for a gas of photons, which interacts with electrons by means of Compton scattering and Bremsstrahlung radiation. Assuming that a suitable adimensional parameter ε (which measures the strength of the Bremsstrahlung effect) is small enough, we show that the problem considered has two natural timescales. For times t = O(1), the dynamics is conducted by that of a reduced problem, corresponding to setting ε = O in the original equations. Solutions of that problem may blow up in finite time, and the total number of photons is no longer preserved after the singularity formation. Nevertheless, solutions of this problem can be continued for all times, if defined in a suitable sense. When t --> infinity, solutions of such a modified problem converge towards a Bose-Einstein distribution with a suitable (in general nonzero) chemical potential. However, at times of order t = O((ε|log ε|)(-2/3)), the Bremsstrahlung term becomes dominant at low frequencies, and drives the photon distribution to approach to a Planck distribution as time goes to infinity.


Tipo de documento:Artículo
Palabras clave:Radiation; Fokker-Plank equation; Bremsstrahlung effect
Materias:Ciencias > Física > Física matemática
Ciencias > Matemáticas > Ecuaciones diferenciales
Ciencias > Física > Física nuclear
Código ID:16696
Referencias:

C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Mc Graw Hill, New York, 1978.

G. Cooper, Compton Fokker–Planck equation for hot plasmas, Phys. Rev. D 3 (1971) 231–22316.

R.E. Caflisch, C.D. Levermore, Equilibrium for radiation in a homogeneous plasma, Phys. Fluids 29 (1986) 748–752.

H. Dreicer, Kinetic theory of an electron–photon gas, Phys. Fluids 7 (1964) 735–753.

M. Escobedo, M.A. Herrero, J.J.L. Velázquez, A nonlinear Fokker–Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma, Trans. Amer. Math. Soc. 350 (1998) 3837–3901.

A. Friedman, Partial differential equations of parabolic type, Krieger, New York, 1983.

A.S. Kompaneets, The establishment of thermal equilibrium between quanta and electrons, Soviet Phys. JETP 4 (1957) 730–737.

P.J.E. Peebles, Principles of Physical Cosmology, Princeton University Press, Princeton, NT, 1993.

R.Weymann, Diffusion approximation for a photon gas interacting with a plasma via the Compton effect, Phys. Fluids 8 (1965) 2112–2114.

Ya.B. Zel’dovich, D. Novikov, Relativistic Astrophysics, vol. 2: The Structure and Evolution of the Universe, The University of Chicago Press, Chicago, 1983.

Depositado:11 Oct 2012 08:42
Última Modificación:07 Feb 2014 09:34

Sólo personal del repositorio: página de control del artículo