Complutense University Library

Sequential convergences and Dunford-Pettis properties

Jaramillo Aguado, Jesús Ángel and Prieto Yerro, M. Ángeles and Zalduendo, Ignacio (2000) Sequential convergences and Dunford-Pettis properties. Annales Academiae Scientiarum Fennicae-Mathematica, 25 (2). pp. 467-475. ISSN 1239-629X

[img] PDF
Restricted to Repository staff only until 2020.

199kB

Official URL: http://www.emis.ams.org/journals/AASF/Vol25/jaramill.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

Several forms of the Dunford-Pettis property are studied, each related to a different mode of sequential convergence, and a different class of weakly compact functions. The relationship between these Dunford-Pettis properties is investigated, and the appearance of previously studied Dunford-Pettis properties is pointed out, giving a unifying approach to the subject.

Item Type:Article
Uncontrolled Keywords:Sequential convergence; Dunford-Pettis property; holomorphic convergence
Subjects:Sciences > Mathematics > Functional analysis and Operator theory
ID Code:16717
References:

Aron, R.M., Y.S. Choi, and J.G. Llavona: Estimates by polynomials. - Bull. Austral. Math. Soc. 52, 1995, 475-486.

Biström, P., J.A. Jaramillo, and M. Lindström: Polynomial compactness in Banach spaces. - Rocky Mountain J. Math. 28(1), 1998, 1203-1226.

Borwein, J., M. Fabian, and J. Vanderwerff: Characterizations of Banach spaces via convex and other locally Lipschitz functions. - Acta Math. Vietnam. 22(1), 1997, 53-69.

Bourgain, J.: H1 is a Grothendieck space. - Studia Math. 75, 1982, 193-226.

Bourgain, J.: New Banach space properties of the disc algebra and H1. - Acta Math.152, 1984, 1-48.

Castillo, J.M.F., and F. Sánchez: Dunford-Pettis-like properties of continuous vector function spaces. - Rev. Mat. Univ. Complut. Madrid 6(1), 1993, 43-59.

Cembranos, P.: The hereditary Dunford-Pettis property on C(K;E) . - Illinois J. Math. 31(3), 1987, 365-373.

Diestel, J.: A survey of results related to the Dunford-Pettis property. - Contemp. Math. 2, Amer. Math. Soc., Providence, RI, 1980, 15-60.

Diestel, J.: Sequences and Series in Banach Spaces. - Graduate Texts in Math. 92, Springer-Verlag, New York, 1984.

Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. - Springer Monogr. Math., Springer-Verlag, London, 1999.

Dudley, R.M.: On sequential convergence. - Trans. Amer. Math. Soc. 112, 1964, 483-507.

Farmer, J.D., and W.B. Johnson: Polynomial Schur and polynomial Dunford-Pettis properties. - Contemp. Math. 144, 1993, 95-105.

Josefson, B.: Weak sequential convergence in the dual of a Banach space does not imply norm convergence. - Ark. Mat. 13, 1975, 79-89.

Pelczynski, A.: A property of multilinear operations. - Studia Math. 16, 1957, 173-182.

Petunin, Y.I., and V.I. Savkin: Convergence generated by analytic functions. – Ukranian Math. J. 40, 1988, 676-679.

Ryan, R.A.: Dunford {Pettis properties. - Bull. Acad. Polon. Sci. Math. 27, 1979, 373-379.

Ryan, R.A.: Weakly compact holomorphic mappings on Banach spaces. - Paci¯c J. Math. 131(1), 1988, 179-190.

Schaefer, H.H.: Topological Vector Spaces. - Graduate Texts in Math. 3, Springer-Verlag, New York, 1971.

Deposited On:16 Oct 2012 08:23
Last Modified:07 Feb 2014 09:34

Repository Staff Only: item control page