Complutense University Library

Application of wavelet-based tools to study the dynamics of biological processes

Makarov , Valeri A. and Pavlov, Alexey N. and Mosekilde, Erik and Sosnovtseva, Olga V. (2006) Application of wavelet-based tools to study the dynamics of biological processes. Briefings in Bioinformatics, 7 (4 ). 375-389 . ISSN 1467-5463

[img] PDF
Restricted to Repository staff only until 31 December 2020.

336kB

Official URL: http://bib.oxfordjournals.org/content/7/4/375.full.pdf+html

View download statistics for this eprint

==>>> Export to other formats

Abstract

The article makes use of three different examples (sensory information processing in the rat trigeminal complex, intracellular interaction in snail neurons and multimodal dynamics in nephron autoregulation) to demonstrate how modern approaches to time-series analysis based on the wavelet-transform can provide information about the underlying complex biological processes.

Item Type:Article
Uncontrolled Keywords:Rhythmic activity; Data analysis; Interaction phenomena; Information processing; Double-wavelet approach
Subjects:Sciences > Computer science > Computer programming
ID Code:16748
References:

Hesch RD. Endokrinologie - Teil A, München: Urban and Schwarzenberg, 1989.

Glass L, Mackey MC. From Clocks to Chaos: The Rhythms of Life. Princeton: Princeton University Press, 1988.

Goldbeter A. (ed). Cell to Cell Signalling: From Experiments to Theoretical Models. London: Academic Press, 1989.

Gray CM, König P, Engel AK, et al. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 1989;388: 334–7.

Stern EA, Jaeger D, Wilson CJ. Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 1998;394:475–8.

Sosnovtseva OV, Pavlov AN, Brazhe NA, et al. Interference microscopy under double-wavelet analysis: a new tool to studying cell dynamics. Phys Rev Let 2005; 94:218103.

Mosekilde E. Topics in Nonlinear Dynamics: Applications to Physics, Biology and Economic Systems. Singapore: World Scientific, 1996.

Grossman A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 1984;15:723–36.

Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.

Meyer Y. (ed). Wavelets and Applications. Berlin: Springer- Verlag, 1992.

Chui CK. An Introduction to Wavelets. New York: Academic Press, 1992.

Mallat SG. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998.

Kantz H, Schreiber T. Nonlinear Time Series Analysis. Cambridge: Cambridge University Press, 2004.

Gabor D. Theory of communication. J IEE 1946;93: 429–57.

Peng C-K, Havlin S, Stanley HE, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995;5:82–87.

Muzy JF, Bacry E, Arneodo A. The multifractal formalism revisited with wavelets. Int J Bifurcation Chaos 1994;4: 245–302.

Kaiser G. A Friendly Guide toWavelets. Boston: Birkháuser, 1994.

Tuckwell HC. Introduction to Theoretical Neurobiology. Cambridge: Cambridge University Press, 1988, Vol. 1,2.

Arvidsson J. Somatotopic organization of vibrissae afferents in the trigeminal sensory nuclei of the rat studied by transganglionic transport of HRP. J CompNeurol 2004;211: 84–92.

Darian-Smith I. The trigeminal system. In: Iggo A, (ed). Handbook of Sensory Physiology. Berlin: Springer-Verlag, 1973;271–315.

Jacquin MF, Renehan WE, Rhoades RW, et al. Morphology and topography of identified primary afferents in trigeminal subnuclei principalis and oralis. J Neurophysiol 1993;70:1911–36.

Moreno A, García-González V, Sánchez-Jiménez A, et al. Principalis, oralis and interpolaris responses to whisker movements provoked by air jets in rats. Neuroreport 2005;16: 1569–73.

Tychinskii VP. Coherent phase microscopy of intracellular processes. PhysUspekhi 2001;44:683–96.

Straub VA, Benjamin PR. Extrinsic modulation and motor pattern generation in a feeding network: a cellular study. JNeurosci 2001;21:1767–78.

Adison PS, Watson JN. Secondary transform decoupling of shifted nonstationary signal modulation components: application to photoplethysmography. Int J Wavelets Multi Inform Process 2004;2:43–57.

Sosnovtseva OV, Pavlov AN, Mosekilde E, et al. Doublewavelet approach to study frequency and amplitude modulation in renal autoregulation. Phys Rev E 2004;70:031915.

Marsh DJ, Sosnovtseva OV, Pavlov AN, et al. Frequency encoding in renal blood flow regulation. Am J Physiol Regul Integr Comp Physiol 2005;288:R1160–7.

Sosnovtseva OV, Pavlov AN, Mosekilde E, et al. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics. PhysiolMeasur 2005;26:351–62.

Brazhe NA, Brazhe AR, Pavlov AN, et al. Unraveling cell processes: Interference imaging weaved with data analysis. J Biol Phys 2006 (in press).

Lin MW, Wu AZ, Ting WH, et al. Changes in membrane cholesterol of pituitary tumor (GH3) cells regulate the activity of large-conductance Ca2þ –activated Kþ channels. ChinJ Physiol 2006;49:1–13.

O’Connell K, Martens JR, Tamkun MM. Localization of ion channels to lipid raft domains within the cardiovascular system. Trends Cardiovas Med 2004;14:37–42.

Szucs A, Molnar G, Rozsa K. Periodic and oscillatory firing patterns in identified nerve cells of LymnaeaStagnalis L. Acta Biol Hung 1999;50:269–78.

Schutt A, Bullock TH, Basar E. Odor input generates 1.5 Hz and 3 Hz spectral peaks in the Helix pedal ganglion. Brain Res 2000;879:73–87.

Peixoto N, Ramirez FJ, Javier F. Helix aspersa identified neurons on multielectrode-array: Electrical stimulation and recording. Forum of Eur Neurosci Soc-FENS2000, Brighton, UK, 155.

Holstein-Rathlou N-H, Leyssac PP. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiol Scand 1986;126:333–9.

Leyssac PP, Holstein-Rathlou N-H. Effects of various transport inhibitors on oscillating TGF pressure response in the rat. Pflu«gers Arch 1986;407:285–91.

Holstein-Rathlou N-H, Marsh DJ. Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics. Physiol Rev 1994;74:637–81.

Sosnovtseva OV, Pavlov AN, Mosekilde E, et al. Bimodal oscillations in nephron autoregulation. Phys Rev E 2002;66:061909.

Holstein-Rathlou N-H, Yip K-P, Sosnovtseva OV, et al. Synchronization phenomena in nephron-nephron interaction. Chaos 2001;11:417–26.

Chon KH, Chen YM, Marmarelis VZ, et al. Detection of interactions between myogenic and TGF mechanisms using nonlinear analysis. Am J Physiol Renal Physiol 1994;267: F160–73.

Deposited On:18 Oct 2012 10:00
Last Modified:07 Feb 2014 09:35

Repository Staff Only: item control page