E-Prints Complutense

Algebras of real analytic functions; homorphisms and bounding sets



Último año

Biström, P. y Jaramillo Aguado, Jesús Ángel y Linsdtröm, M. (1993) Algebras of real analytic functions; homorphisms and bounding sets. Extracta Mathematicae, 8 (2-3). pp. 112-118. ISSN 0213-8743

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URLTipo de URL


In this expository article, the authors investigate bounding sets and evaluating properties of homomorphisms for algebras A(E) of functions on a real Banach space E. A
subset B � E is said to be A-bounding if for all f 2 A(E), supx2B |f(x)| < 1. A(E) is said to be single-set evaluating if for every homomorphism � 2 Hom A(E) and every f 2 A(E), �(f) 2 f(E), and it is said to be sequentially evaluating if for every homomorphism � and every sequence (fn) � A(E), there is a 2 E such that �(fn) = fn(a) for every n.
The following are among the results described: If A(E) contains the algebra of rational functions on E, then each A-bounding set is relatively compact in E provided that there is a function f 2 A(`1) that is unbounded on the unit vectors of `1. As a consequence, for every E the C1-bounding sets are relatively compact. Let AE(E) denote the set of functions f : E ! R which are a pointwise (infinite) sum of polynomials, and let RAE(E) denote the smallest inverse-closed algebra containing AE(E). If E is weakly
Lindel¨of with the Dunford-Pettis property and E does not contain a copy of `1, then E = Hom(AE(E)) = HomRAE(E).

Tipo de documento:Artículo
Palabras clave:Homomorphisms; bounding sets; evaluating algebras
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:16765
Depositado:19 Oct 2012 08:28
Última Modificación:07 Feb 2014 09:35

Descargas en el último año

Sólo personal del repositorio: página de control del artículo