Biblioteca de la Universidad Complutense de Madrid

Behavior of entire functions on balls in a Banach space

Impacto

Ansemil, José María M. y Aron, Richard M. y Ponte, Socorro (2009) Behavior of entire functions on balls in a Banach space. Indagationes Mathematicae, 20 (4). pp. 483-489. ISSN 0019-3577

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

82kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0019357709800219




Resumen

In this paper we prove that given any two disjoint balls in an infinite dimensional complex Banach space, there exists an entire function which is bounded on one and unbounded on the other.


Tipo de documento:Artículo
Palabras clave:Banach space; Entire function; Radius of boundedness
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:16773
Referencias:

Ansemil J.M., Aron R.M., Ponte S. – Representation of spaces of holomorphic functions on Banach spaces, Pub. RIMS, Kyoto Univ. 45 (2009) 383–391.

Aron R.M. – Entire functions of unbounded type on a Banach space, Boll. Un. Mat. Ital. 9 (1974) 28–31.

Coeuré G. – Sur le rayon de bornologie des fonctions holomorphes, Lecture Notes in Math. 578 (1977) 183–194.

Diestel J. – Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer-Verlag, New York, 1984.

Dineen S. – Unbounded holomorphic functions on a Banach space, J. London Math. Soc. (2) 4 (1972) 461–465.

Dineen S. – Complex Analysis on Infinite Dimensional Spaces,Springer Monographs in Mathematics,Springer-Verlag, London, 1999.

Kiselman C.O. – On the radius of convergence of an entire function in a normed space, Ann. Polon. Math. 33 (1976) 39–55.

Schottenloher M. – Richness of the class of holomorphic functions on an infinite dimensional space, North-Holland Math. Stud. 12 (1977) 209–225.

Depositado:19 Oct 2012 08:15
Última Modificación:07 Feb 2014 09:35

Sólo personal del repositorio: página de control del artículo