Complutense University Library

Behavior of entire functions on balls in a Banach space

Ansemil, José María M. and Aron, Richard M. and Ponte, Socorro (2009) Behavior of entire functions on balls in a Banach space. Indagationes Mathematicae, 20 (4). pp. 483-489. ISSN 0019-3577

[img] PDF
Restricted to Repository staff only until 31 December 2020.

82kB

Official URL: http://www.sciencedirect.com/science/article/pii/S0019357709800219

View download statistics for this eprint

==>>> Export to other formats

Abstract

In this paper we prove that given any two disjoint balls in an infinite dimensional complex Banach space, there exists an entire function which is bounded on one and unbounded on the other.


Item Type:Article
Uncontrolled Keywords:Banach space; Entire function; Radius of boundedness
Subjects:Sciences > Mathematics > Functional analysis and Operator theory
ID Code:16773
References:

Ansemil J.M., Aron R.M., Ponte S. – Representation of spaces of holomorphic functions on Banach spaces, Pub. RIMS, Kyoto Univ. 45 (2009) 383–391.

Aron R.M. – Entire functions of unbounded type on a Banach space, Boll. Un. Mat. Ital. 9 (1974) 28–31.

Coeuré G. – Sur le rayon de bornologie des fonctions holomorphes, Lecture Notes in Math. 578 (1977) 183–194.

Diestel J. – Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer-Verlag, New York, 1984.

Dineen S. – Unbounded holomorphic functions on a Banach space, J. London Math. Soc. (2) 4 (1972) 461–465.

Dineen S. – Complex Analysis on Infinite Dimensional Spaces,Springer Monographs in Mathematics,Springer-Verlag, London, 1999.

Kiselman C.O. – On the radius of convergence of an entire function in a normed space, Ann. Polon. Math. 33 (1976) 39–55.

Schottenloher M. – Richness of the class of holomorphic functions on an infinite dimensional space, North-Holland Math. Stud. 12 (1977) 209–225.

Deposited On:19 Oct 2012 08:15
Last Modified:07 Feb 2014 09:35

Repository Staff Only: item control page