Complutense University Library

Anharmonicity and its significance to non-Ohmic electric conduction

Makarov , Valeri A. and Velarde, Manuel G. and Chetverikov, Alexander and Ebeling, Werner (2006) Anharmonicity and its significance to non-Ohmic electric conduction. Physical Review E , 73 (6). ISSN 1539-3755

[img] PDF
Restricted to Repository staff only until 31 December 2020.

810kB

Official URL: http://pre.aps.org/abstract/PRE/v73/i6/e066626

View download statistics for this eprint

==>>> Export to other formats

Abstract

We provide here a thorough analysis of the interplay between anharmonic lattice dynamics (with exponential repulsion between units) and electric conduction in a driven-dissipative electrically charged one-dimensional system. First, we delineate the ranges of parameter values where, respectively, subsonic and supersonic wave solitons are possible along the lattice. Then, we study the consequences of the soliton-mediated coupling of light negative to heavy positive charges (lattice units). In the presence of an external electric field we obtain the current-field characteristics for a wide range of values of all parameters defining the system. Finally, we discuss the conditions for an Ohmic-non-Ohmic transition of the electric current as the electric field strength is varied.

Item Type:Article
Uncontrolled Keywords:High-density; Dissipative solitons; Toda-lattices; Oscillations; Excitations; Transport; Proteins; Polymers; Currents; Helium
Subjects:Medical sciences > Biology > Biomathematics
ID Code:16774
References:

D. DeVault, Quantum-Mechanical Tunneling in Biological Systems (Cambridge University Press, Cambridge, UK, 1984).

A. M. Kuznetsov, Charge Transfer in Physics, Chemistry and Biology: Physical Mechanisms of Elementary Processes and an Introduction to the Theory (Taylor and Francis, London, UK, 1995), and references therein.

J. N. Onuchic, D. N. Beratan, J. R. Winkler, and H. B. Gray, Annu. Rev. Biophys. Biomol. Struct. 21, 349 (1992).

H. B. Gray and J. R. Winkler, Annu. Rev. Biochem. 65, 537 (1996).

J. J. Regan and J. N. Onuchic, Adv. Chem. Phys. 107, 497 (1999).

A. A. Stuchebrukhov, Adv. Chem. Phys. 118, 1 (2001).

H. B. Gray and J. R. Winkler, Proc. Natl. Acad. Sci. U.S.A. 102, 3534 (2005), and references therein.

A. S. Davydov, Solitons in Molecular Systems, 2nd Edition (Reidel, Dordrecht, 1991).

Davydov’s Soliton Revisited. Self-Trapping of Vibrational Energy in Protein, edited by P. L. Christiansen and A. C. Scott (Plenum, New York, 1990).

A. C. Scott, Phys. Rep. 217, 1 (1992).

Proton Transfer in Hydrogen-Bonded Systems, edited by T. Bountis (Plenum, New York, 1992).

D. Hennig, Phys. Rev. E 62, 2846 (2000).

D. Hennig, E. B. Starikov, J. F. R. Archilla, and F. Palmero, J. Biol. Phys. 30, 227 (2004).

M. G. Velarde, W. Ebeling, D. Hennig, and C. Neissner, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, 1035 (2006).

D. Hennig, C. Neissner, M. G. Velarde, and W. Ebeling, Phys. Rev. B 73, 024306 (2006).

A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su, Rev. Mod. Phys. 60, 781 (1988).

Solitons and Polarons in Conducting Polymers, edited by L. Yu (World Scientific, Singapore, 1988).

M. G. Velarde, W. Ebeling, and A. P. Chetverikov, Int. J. Bifurcation Chaos Appl. Sci. Eng. 15, 245 (2005).

A. P. Chetverikov, W. Ebeling, and M. G. Velarde, Contrib. Plasma Phys. 45, 275 (2005).

A. P. Chetverikov, W. Ebeling, and M. G. Velarde, Int. J. Bifurcation Chaos Appl. Sci. Eng. (to be published).

V. A. Makarov, W. Ebeling, and M. G. Velarde, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 1075 (2000).

V. A. Makarov, E. del Rio, W. Ebeling, and M. G. Velarde, Phys. Rev. E 64, 036601 (2001).

A. P. Chetverikov, W. Ebeling, and M. G. Velarde, Eur. Phys. J. B 44, 509 (2005).

A. P. Chetverikov, W. Ebeling, and M. G. Velarde, Eur. Phys. J. B 51, 87 (2006).

C. Christov and M. G. Velarde, Physica D 86, 323 (1995).

V. I. Nekorkin and M. G. Velarde, Synergetic Phenomena in Active Lattices. Patterns, Waves, Solitons, Chaos (Springer-Verlag, Berlin, 2002).

M. G. Velarde, Int. J. Quantum Chem. 98, 272 (2004).

M. Ross and F. H. Ree, J. Chem. Phys. 73, 6146 (1980).

M. Ross, F. H. Ree, and D. A. Young, J. Chem. Phys. 79, 1487 (1983).

W. J. Nellis, N. C. Holmes, A. C. Mitchell, R. J. Trainor, G. K. Governo, M. Ross, and D. A. Young, Phys. Rev. Lett. 53, 1248 (1984).

M. Ross and D. A. Young, Phys. Lett. A 118, 463 (1986).

E. M. Apfelbaum, V. S. Vorobev, and G. A. Martynov, J. Phys. Chem. A 108, 10381 (2004).

M. Toda, Nonlinear Waves and Solitons (Kluwer, Dordrecht, 1983).

T. Pohl, U. Feudel, and W. Ebeling, Phys. Rev. E 65, 046228 (2002).

N. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehardt & Winston, Philadelphia, 1976).

V. Heine, M. L. Cohen, and D. Weaire, The Pseudopotential Concept (Academic Press, New York, 1970).

J. W. Strutt [Lord Rayleigh], Philos. Mag. 15, 229 (1883).

J. W. Strutt [Lord Rayleigh], The Theory of the Sound (Dover reprint, New York, 1941) Vol. I, Sec. 68a.

B. Van der Pol, Philos. Mag. 2, 978 (1926); 3, 65 (1927).

F. Schweitzer, Brownian Agents and Active Particles. Collective Dynamics in the Natural and Social Sciences (Springer-Verlag, Berlin, 2003).

W. G. Hoover, Time Reversibility, Computer Simulation, and Chaos (World Scientific, Singapore, 1999).

R. Klages, K. Rateitschak, and G. Nicolis, Phys. Rev. Lett. 84, 4268 (2000).

K. Rateitschak, R. Klages, and W. G. Hoover, J. Stat. Phys. 101, 61 (2000).

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer-Verlag, Berlin, 1995).

Deposited On:19 Oct 2012 08:13
Last Modified:07 Feb 2014 09:35

Repository Staff Only: item control page