Complutense University Library

On the structure of the moduli of jets of G-structures with a linear connection


Martínez Ontalba, Celia and Muñoz Masqué, Jaime and Valdés Morales, Antonio (2003) On the structure of the moduli of jets of G-structures with a linear connection. Differential Geometry and Its Applications, 18 (3). pp. 271-283. ISSN 0926-2245

[img] PDF
Restringido a Repository staff only hasta 2020.


Official URL:


The moduli space of jets of G-structures admitting a canonical linear connection is shown to be isomorphic to
the quotient by G of a natural G-module.

Item Type:Article
Uncontrolled Keywords:Canonical linear connection; Differential invariant; G-structure; Jet bundles; Moduli of G-structures
Subjects:Sciences > Mathematics > Differential geometry
ID Code:16808

V.I. Arnold, Mathematical Problems in Classical Physics, in: Trends and Perspectives in Applied Mathematics, Applied Mathematics Sciences, Vol. 100, Springer-Verlag, New York, 1994.

D. Bernard, Sur la géometrie différentielle des G-structures, Ann. Inst. Fourier, Grenoble 10 (1960) 151–270.

D.B.A. Epstein, Natural tensors on Riemannian manifolds, J. Differential Geom. 10 (1975) 631–645.

A. Fujimoto, Theory of G-structures, Vol. 1, 1972, English edition translated from the original Japanese, Publications of the Study Group of Geometry.

S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1972.

S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. I, Wiley, New York, 1963.

J. Muñoz Masqué, A. Valdés, The number of functionally independent invariants of a pseudo-Riemannian metric, J. Phys. A: Math. Gen. 27 (1994) 7843–7855.

R.S. Palais, Seminar on the Atiyah–Singer Index Theorem, in: Ann. Math. Studies, Vol. 57, Princeton University Press, Princeton, NJ, 1965.

T.Y. Thomas, The Differential Invariants of Generalized Spaces, Cambridge University Press, London, 1934.

A. Valdés, Differential invariants of R∗-structures, Math. Proc. Cambridge Philos. Soc. 119 (1996) 341–356.

A.M. Verbovetskii, A.M. Vinogradov, D.M. Gessler, Scalar differential invariants and characteristic classes of homogeneous geometric structures, Math. Notes 51 (1996) 543–549.

A.M. Vinogradov, Scalar differential invariants, diffieties and characteristic classes, in: M. Francaviglia (Ed.), Mechanics, Analysis and Geometry: 200 Years After Lagrange, Elsevier, Amsterdam, 1991, pp. 379–414.

Deposited On:23 Oct 2012 08:28
Last Modified:05 May 2016 17:12

Repository Staff Only: item control page