Biblioteca de la Universidad Complutense de Madrid

Spaces of holomorphic germs on quotients

Impacto

Ansemil, José María M. y Ponte, Socorro (1993) Spaces of holomorphic germs on quotients. Journal of Mathematical Analysis and Applications, 172 (1). pp. 33-38. ISSN 0022-247X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

238kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0022247X83710048




Resumen

Let (X, Φ) be a Riemann domain over a complex Fréchet space E, K a compact subset of X and (K) the vector space of all holomorphic germs on K. Given an F-quotient (XF, φF, ψ) of (X, φ) (see the definition below), the canonical mapping ψ : X ↦ XF induces a mapping ψ* : g ∈ (ψ(K)) ↦ g ○ ψ ∈ (K). Our aim here is to study conditions under which ψ* is an embedding when natural topologies on spaces of germs are considered.


Tipo de documento:Artículo
Palabras clave:Riemann domain over a complex Fréchet space; space of all holomorphic germs
Materias:Ciencias > Matemáticas > Funciones (Matemáticas)
Código ID:16811
Referencias:

J.M. Ansemil and S.Ponte. The compact open and the Nachbin ported topologies on spaces of holomorphic functions. Arch. Math. 51 (1988), 65-70.

J.M. Ansemil and Taskinen. On a problem of topologies in infinite dimensional holomorphy. Arch. Math. 54 (1990), 61-64.

R.M.Aron, L.A.Moraes and R.A.Ryan. Factorizaton of holomorphic mappings in infinite dimensions. Math. Ann. 277 (1987), 617-628.

S.F.Belenot. Basic sequences in non-Schwart—Fréchet spaces. Trans. Amer.Math. Soc. 258, n 1 (1980), 198-216

J.Bonet and J.C.Díaz. The problem of topologies of Groethendieck and the class of Fréchet T-space. Math.Nachr. 150(1991, 109-118.

S.Dineen.Complex analysis in locally convex spaces. North-Holland Math.Studies. vol.57,Noth-Holland, Amsterdam, 1981.

S.Dineen.Holomorphic functions on Frécet-Montel spaces. J.Math.Anal. Appl.163,n.2(1992), 581-587.

K.Floret. Fréchet-Montel spaces wich are not Schwart-spaces. Portugal.Math.42 (1983/1984), 1-4.

P.Galindo, D.García, and M.Maestre. The coincidence of τ0 and τw for spaces of holomorphic functions on some Frécet-Montel space. Proc.R.Ir.Acad. 91A, n.2 (1991), 137-143

J.Horvát. Topological vector spaces and distributions. Addison-Wesley, Reading, MA,1996.

L.A.Moraes, O.W.Paques, and C.Zaine. F-quotient and envelope of F-holomorphy, J.Math.Anal.Appl. 163,n.2(1992), 393-405.

J.Mujica. A Banach-Dieudonné theorem for germs of holomorphic functions. J.Funct.Anal.57, n.1(1984), 31-48.

S.Ponte. A remark about the embedding (H(E/F), τ) (H(E),τ) with τ=τ0,τw in Fréchet spaces. Note Math.9, n.2(1989), 217-220.

Depositado:23 Oct 2012 08:24
Última Modificación:07 Feb 2014 09:36

Sólo personal del repositorio: página de control del artículo