Biblioteca de la Universidad Complutense de Madrid

Spaces of holomorphic functions and germs on quotients

Impacto

Ansemil, José María M. y Aron, Richard M. y Ponte, Socorro (1992) Spaces of holomorphic functions and germs on quotients. In Progress in Functional Analysis. North-Holland mathematics studies (170). Elsevier Science Publ. B. V., Amsterdam, pp. 163-177. ISBN 0-444-89378-4

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0304020808703177




Resumen

Let E be a complex locally convex space, F a closed subspace, and let π be the canonical quotient mapping from E onto E/F. Let H(U) [resp. H(K)] be the set of holomorphic functions on the open set U of E [resp. the set of germs of holomorphic functions on the compact set K of E]. Let π∗ be the mapping induced by π from H(π(U)) [resp. H(π(K))] into H(U) [resp. H(K)].
π∗ is always continuous for the natural topologies; the aim of the paper is to give a survey of the results concerning when π∗ is, or is not, an embedding.


Tipo de documento:Sección de libro
Información Adicional:

INTERNATIONAL FUNCTIONAL ANALYSIS MEETING ON THE OCCASION OF THE 60TH BIRTHDAY OF PROFESSOR M VALDIVIA.PENISCOLA,OCT 22-27, 1990

Palabras clave:holomorphic mappings on quotient spaces; compact open topology; embedding; Fréchet-Montel non-Schwartz space; Montel space
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:16818
Depositado:23 Oct 2012 08:19
Última Modificación:10 Dic 2013 17:44

Sólo personal del repositorio: página de control del artículo