Biblioteca de la Universidad Complutense de Madrid

The compact open and the Nachbin ported topologies on spaces of holomorphic functions

Impacto

Ansemil, José María M. (1988) The compact open and the Nachbin ported topologies on spaces of holomorphic functions. Archiv der Mathematik, 51 (1). pp. 65-70. ISSN 0003-889X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

339kB

URL Oficial: http://www.springerlink.com/content/v72m28101480m732/




Resumen

Some examples of Fréchet Montel spaces E, which are not Schwartz spaces, for which the compact open and the Nachbin ported topologies coincide on the space of all holomorphic functions on an arbitrary balanced open subset of E, are given.


Tipo de documento:Artículo
Palabras clave:Fréchet Montel spaces which are not Schwartz spaces, for which the compact open and the Nachbin ported topologies coincide on the space of all holomorphic functions on an arbitrary balanced open subset
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:16826
Referencias:

J. M. Ansemil and S. Ponte, Topologies associated with the compact open topology onH(U). Proc. Royal Irish Acad. Sect. A82, 121-128 (1982).

K. D.Biersted, R. G.Meise and W. H.Summers, Köthe sets and Köthe sequence spaces. Proc. of the Seminar on Functional Analysis, Holomorphy and Approximation Theory. J. A. Barroso Editor; North-Holland Mat. Studies71, 27-91 (1982).

S.Dineen, Complex analysis in locally convex spaces. North-Holland Mat. Studies57 (1981).

K. Floret, Fréchet-Montel spaces which are not Schwartz spaces. Portugal. Math.42, 1-4 (1983-84).

A. Grothendieck, Sur les espaces (F) and (DF). Summa Brasiliensis Math.3, 57-122 (1954).

A.Grothendieck, Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc.16 (1955).

J.Horwath, Topological vector spaces and distributions. Reading, Massachusetts 1966.

G.Köthe, Topological vector spaces II. Berlin-Heidelberg-New York 1979.

R. G. Meise, A remark on the ported and compact open topology for spaces of holornorphic functions on nuclear Fréchet spaces. Proc. Royal Irish Acad. Sect. A (2)81, 217-233 (1981).

J. Mujica, A Banach-Dieudonné theorem for germs of holomorphic functions. J. Funct. Anal. (1)57, 31-48 (1984).

J. Mujica, Holomorphic approximation in infinite-dimensional Riemann domains. Studia Math.82, 107-134 (1985).

L.Nachbin, Topology on spaces of holomorphic mappings. Ergeb. Math. Grenzgeb.47, 1969.

L. Nachbin, On pure uniform holomorphy in spaces of holomorphic germs. Results in Mathematics,8, 117-122 (1985).

J. Bonet andA. Defant, Projective tensor products of distinguished Fréchet spaces. Proc. Royal Irish Acad. Sect. A85, 193-200 (1985).

Depositado:24 Oct 2012 09:01
Última Modificación:13 Nov 2013 15:22

Sólo personal del repositorio: página de control del artículo