### Impacto

Ibort, A. and Martínez Montalba, Celia
(1996)
*Arnold’s conjecture and symplectic reduction.*
Journal of geometry and physics, 18
(1).
pp. 25-37.
ISSN 0393-0440

PDF
Restringido a Repository staff only hasta 2020. 862kB |

Official URL: http://www.sciencedirect.com/science/article/pii/0393044096895386

## Abstract

Fortune (1985) proved Arnold's conjecture for complex projective spaces, by exploiting the fact that CPn-1 is a symplectic quotient of C-n. In this paper, we show that Fortune's approach is universal in the sense that it is possible to translate Arnold's conjecture on any closed symplectic manifold (Q,Omega) to a critical point problem with symmetry on loops in R(2n) With its Standard symplectic structure.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | symplectic reduction; critical points; Arnold’s conjecture |

Subjects: | Sciences > Mathematics > Mathematical analysis Sciences > Mathematics > Differential equations |

ID Code: | 16829 |

References: | V.I. Arnold, Commentary on “On a geometrical theorem”, in: Collected Works, Vol. II, ed. H. Poincare (Nauka, Moscow, MR 52 # 5337,1972) pp. 987-989. V.I. Arnold, Fixed points of symplectic diffeomorphisms, in: Mathematical Developments Arisingfrom the Hilbert Problems, Proc. Symp. Pure Math., Amer. Math. Sot. 28 (1976) 66. A. Fleer, Symplectic fixed points and holomorphic spheres, Commun. Math. Phys. 120 (1989) 575-611. B. Fortune, A symplectic fixed point theorem for CP”, Inv. Math. 81 (1985) 29-46. B. Fortune and A. Weinstein, A symplectic fixed point theorem for complex projective spaces, Bull.Amer. Math. Sot. 12 (1985) 128-130. A.B. Givental, A symplectic fixed point theorem for toric manifolds, Progress in Math. Fleer Memorial Volume, 1994, to appear. M.J. Gotay and G.M. Tuynman, R2” is a universal symplectic manifold for reduction, Lett. Math. Phys. 18 (1989) 55-59. L& Hong Van and K. Ono, Symplectic fixed points, the Calabi invariant and Novikov homology,Topology 34 (1995) 155-176. H. Hofer and D. Salamon, Fleer homology and Novikov rings, preprint (1992). A. Ibort and C. Martinez Ontalba, A universal setting for Arnold’s conjecture, C. R. Acad. Sci. Paris t.318, Strie II (1994) 561-566. M. Kummer, On the construction of the reduced phase space of a hamiltonian system with symmetry,Indiana Univ. Math. J 30 (1981) 281-291. Y.-G. Oh, A symplectic fixed point theorem on R*” x Cpk, Math. Z. 203 (1990) 535-552. K. Ono, On the Arnold conjecture for weakly monotone symplectic manifolds, Inv. Math. I 19 (1995)519-537. A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1978)417-420. |

Deposited On: | 24 Oct 2012 09:19 |

Last Modified: | 07 Feb 2014 09:36 |

Repository Staff Only: item control page