Biblioteca de la Universidad Complutense de Madrid

An algorithm on quasi-ordinary polynomials

Impacto

Luengo Velasco, Ignacio y Raimondo , Mario y Alonso García, María Emilia (1989) An algorithm on quasi-ordinary polynomials. Lecture Notes in Computer Science, 356 . pp. 59-73. ISSN 0302-9743

URL Oficial: http://www.springerlink.com/content/y57m4130345633hg/




Resumen

Let K be a field of characteristic O, and let R denote K[X] or K[[X]]. It is well known that the roots of a polynomial FisinR[Z] are fractional powers series in K[[X 1d/]], where Kmacr is a finite extension of K and disin N, and they can be obtained by applying the Newton Puiseux algorithm. Although this is not true for polynomials in more than one variable, there is an important class of polynomials FisinR[Z] (R=K[[X 1, . . ., X n]]=K[[Xlowbar]]), called quasi-ordinary (QO) polynomials, for which the same property holds (i.e. their roots are fractional power series in Kmacr[[Xlowbar 1d/]]). The goal of the paper is to give an algorithm to compute these fractional power series for K (a computable field) and n=2


Tipo de documento:Artículo
Palabras clave:Quasi-ordinary polynomials; Multivariate polynomials; Computable field; Algorithm
Materias:Ciencias > Matemáticas > Álgebra
Código ID:16842
Depositado:24 Oct 2012 08:54
Última Modificación:21 Mar 2013 14:14

Sólo personal del repositorio: página de control del artículo