Biblioteca de la Universidad Complutense de Madrid

Separation of extracellular spikes: When wavelet based methods outperform the principle component analysis

Impacto



Makarov, Valeri A. y Pavlov, Alexey N. y Makarova, J. y Panetsos, Fivos (2005) Separation of extracellular spikes: When wavelet based methods outperform the principle component analysis. In Mechanisms, Symbols, and Models Underlying Cognition. Lecture Notes in Computer Science (3561 ). SPRINGER-VERLAG BERLIN, 123-132 . ISBN 3-540-26298-9

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

931kB

URL Oficial: http://www.springerlink.com/content/ynp8gbbdj4cdkntk/fulltext.pdf?MUD=MP




Resumen

Spike separation is a basic prerequisite for analyzing of the cooperative neural behavior and neural code when registering extracellularly. Final performance of any spike sorting method is basically defined by the quality of the discriminative features extracted from the spike waveforms. Here we discuss two features extraction approaches: the Principal Component Analysis (PCA), and methods based on the Wavelet Transform (WT). We show that the WT based methods outperform the PCA only when properly tuned to the data, otherwise their results may be comparable or even worse. Then we present a novel method of spike features extraction based on a combination of the PCA and continuous WT. Our approach allows automatic tuning of the wavelet part of the method by the use of knowledge obtained from the PCA. To illustrate the methods strength and weakness we provide comparative examples of their performances using simulated and experimental data.


Tipo de documento:Sección de libro
Información Adicional:

1st International Work-Conference on the Interplay Between Natural and Artificial Computation. Las Palmas, SPAIN. JUN 15-18, 2005.

Materias:Ciencias > Matemáticas > Grupos (Matemáticas)
Código ID:16843
Referencias:

Lewicki, M.: A review of methods for spike sorting: the detection and classification of neural action potentials. Net. Com. Neu. Sys. 9 (1998) R53–78.

Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H., Buzsaki, G.: Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84 (2000) 401–14.

Wheeler, B.: Automatic Discrimination of Single Units. (CRC Press, Boca Raton, FL. 1999).

Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. (Wiley-Interscience. 1990).

Downs, G.M., Barnard, J.M.: Clustering methods and their uses in computational chemistry. Rev. Comput. Chem. 18 (2002) 1–40.

Letelier, J.,Weber, P.: Spike sorting based on discrete wavelet transform coefficients. J. Neurosc. Methods 101 (2000) 93–106.

Hulata, E., Segev, R., Ben-Jacob, E.: A method for spike sorting and detection based on wavelet packets and Shannon’s mutual information. J. Neurosc. Methods 117 (2002) 1–12.

Quian Quiroga, R., Nadasdy, Z., Ben-Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neur. Comput. 16 (2004) 1661–1687.

Blatt, M., Wiseman, S., Domany, E.: Superparamagnetic clustering of data. Phys. Rev. Lett. 76 (1996) 3251–3254.

Depositado:24 Oct 2012 08:48
Última Modificación:28 Jun 2016 14:30

Sólo personal del repositorio: página de control del artículo