Complutense University Library

Clustering behavior in a three-layer system mimicking olivo-cerebellar dynamics

Makarov , Valeri A. and Velarde, Manuel G. and Nekorkin, Vladimir I. and Makarenko, Vladimir I. and Llinás, Rodolfo R. (2004) Clustering behavior in a three-layer system mimicking olivo-cerebellar dynamics. Neural Networks , 17 (2). pp. 191-203. ISSN 0893-6080

[img] PDF
Restricted to Repository staff only until 31 December 2020.

576kB

Official URL: http://www.sciencedirect.com/science/article/pii/S0893608003002491

View download statistics for this eprint

==>>> Export to other formats

Abstract

A model is presented that simulates the process of neuronal synchronization, formation of coherent activity clusters and their dynamic reorganization in the olivo-cerebellar system. Three coupled 2D lattices dealing with the main cellular groups in this neuronal circuit are used to model the dynamics of the excitatory feedforward loop linking the inferior olive (IO) neurons to the cerebellar nuclei (CN) via collateral axons that also proceed to terminate as climbing fiber afferents to Purkinje cells (PC). Inhibitory feedback from the CN-lattice fosters decoupling of units in a vicinity of a given IO neuron. It is shown that noise-sustained oscillations in the IO-lattice are capable to synchronize and generate coherent firing clusters in the layer accounting for the excitable collateral axons. The model also provides phase resetting of the oscillations in the IO-lattices with transient silent behavior. It is also shown that the CN-IO feedback leads to transient patterns of couplings in the IO and to a dynamic control of the size of clusters. (C) 2003 Elsevier Ltd. All rights reserved.


Item Type:Article
Uncontrolled Keywords:Inferior olive; Dynamical clusters; Noise; Neuron ensemble oscillations; Nonlinear dynamics; Inferior olivary neurons; Purkinje cells; Coherence resonance; Ionic conductances; Cerebellar system; Climbing fibres; Model; Oscillations; Organization; Modulation
Subjects:Sciences > Computer science > Artificial intelligence
ID Code:16846
References:

Armstrong, D. M., Eccles, J. C., Harvey, R. J., & Matthews, P. B. C. (1968). Responses in the dorsal accessory olive of the cat to stimulation of hindlimb afferents. Journal of Physiology, 194, 125–145.

Bal, T., & McCormick, D. A. (1997). Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current Ih. Journal of Neurophysiology, 77, 3145–3156.

Baltanas, J. P., & Casado, J. M. (1998). Bursting behavior of the FitzHugh- Nagumo neuron model subject to quasi-monochromatic noise. Physica D, 122, 231–240.

de Montigny, C., & Lamarre, Y. (1973). Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. Brain Research, 53, 81–95.

Mugnani, E., & Oertel, W. H. (1981). Distribution of glutamate decarboxylase-positive neurons in the rat cerebellar nuclei. Society of Neuroscience Abstracts, 7, 122.

Nekorkin, V. I., Makarov, V. A., & Velarde, M. G. (1998). Clustering and phase resetting in a chain of bistable nonisochronous oscillators. Physical Review E, 58, 5742–5747.

Nekorkin, V. I., & Velarde, M. G. (2002). Synergetic phenomena in active lattices. Patterns, waves, solitons, chaos. Berlin: Springer.

Nelson,B. J.,Barmack,N.H.,&Mugnaini, E. (1984).AGABAergic cerebelloolivary projection in the rat. Society Neuroscience Abstracts, 10, 539.

Olien, L., & Belair, J. (1997). Bifurcations, stability and monotonicity properties of a delayed neural network model. PhysicaD, 102, 349–363.

Pikovsky, A. S., & Kurths, J. (1997). Coherence resonance in a noise-driven excitable system. Physical Review Letters, 78, 775–778.

Ruigrok, T. J. (1997). Cerebellar nuclei: the olivary connection. Progress in Brain Research, 114, 167–1992.

Sasaki, K., Bower, J. M., & Llinas, R. R. (1989). Multiple purkinje cell recordings in rodent cerebellar cortex. European Journal of Neuroscience, 1, 572–586.

Sasaki, K., & Llinas, R. R. (1985). Dynamic electronic coupling in mammalian inferior olive as determined by simultaneous multiple purkinje cell recording. Ebiophysical Journal, 47, 53a.

Schweighofer, N., Doya, K., & Kawato, M. (1999). Electrophysiological properties of inferior olive neurons: a compartmental model. Journal of Neurophysiology, 82, 804–817.

Sotelo, C., Gotow, T., & Wassef, M. (1986). Localization of glutamic-acid decarboxylase immunocreative axon terminals in the inferior olive of the rat, with special emphasis on anatomic relations between GABAergic synapses dendrodendritic gap junctions. Journal of Comparative Neurology, 252, 32–50.

Sotelo, C., Llinas, R., & Baker, R. (1974). Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. Journal of Neurophysiology, 37, 541–559.

Sugihara, I., Lang, E. J., & Llinas, R. (1993). Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. Journal of Physiology (London), 470, 243–271.

Szentagothai, J., & Rajkovits, K. (1959). Ueber den ursprung der kletterfasern des kleinhirns. Zournal Anatomie Entwicklungsgesh, 121, 130–141.

Tass, P. A. (1999). Phase resetting in medicine and biology. Stochastic modeling and data analysis. Berlin: Springer.

Tuckwell, H. C. (1989). Stochastic processes in the neurosciences. Society for industrial and applied mathematics (SIAM).

Vallbo, A. B., & Wessberg, J. (1993). Organization of motor output in slow finger movements in man. Journal of Physiology (London), 469, 673–691.

Velarde, M. G., Nekorkin, V. I., Kazantsev, V. B., Makarenko, V. I., & Llinas, R. R. (2002). Modeling inferior olive neuron dynamics. Neural Networks, 15, 5–10.

Wei, J., Velarde, M. G., & Makarov, V. A. (2002). Oscillatory phenomena and stability of periodic solutions in a simple neural network with delay. Nonlinear Phenomena in Complex Systems, 5, 407–417.

Welsh, J. P., Lang, E. J., Sugihara, I., & Llinas, R. (1995). Dynamic organization of moto control within the olivorcerebellar system. Nature (London), 374, 453–457.

Welsh, J. P., & Llinas, R. R. (1997). In C. I. De Zeeuw, P. Strata, & J. Voogol (Eds.), Some organizing principles for the control of movement based on olivocerebellar physiology (vol. 114) (pp. 449–461). Progress in Brain Research, New York: Elsevier, Chapter 23.

Yamamoto, T., Fukuda, M.,& Llinas, R. R. (2001). Bilaterally synchronous complex spike Purkinje cell activity in the mammalian cerebellum. European Journal of Neuroscience, 13, 327–339.

Yarom, Y., & Llinas, R. R. (1987). Long-term modifiability of anomalous and delayed rectification in guinea pig inferior olivary neurons. Journal of Neuroscience, 7, 1166–1177.

Yarom, Y. (1989). Oscillatory behavior of olivary neurons. In P. Strata (Ed.), The olivo-cerebellar system in motor control (vol. 17) (pp. 209–220). Experimental Brain Research Series, Berlin: Springer

Bell, C. C., & Kawasaki, T. (1972). Relations among climbing fiber responses of nearby Purkinje cells. Journal of Neurophysiology, 35, 155–169.

Benardo, L. S., & Foster, R. E. (1986). Oscillatory behavior in inferior olive neurons: mechanism, modulation, cell aggregates. Brain Research Bulletin, 17, 773–784.

Bower, J., & Llinas, R. (1982). Simultaneous sampling and analysis of the activity of multiple, closely adjacent cerebellar Purkinje cells. Society for Neuroscience Abstracts, 8, 830.

Campbell, S. A., Belair, J., Ohira, T., & Milton, J. (1995). Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback. Journal of Dynamics and Differential Equations, 7, 213–236.

Chan-Palay, V., & Palay, S. L. (1971). Tendril and glomerular collaterals of climbing fibers in the granular layer of the rat’s cerebellar cortex. Zournal Anatomie Entwicklungsgesch, 133, 247–273.

Cronin, J. (1987). Mathematical aspects of Hodgkin–Huxley neural theory. Cambridge: Cambridge University Press.

Doi, S., Inoue, J., Sato, S., & Smith, C. E. (1999). Bifurcation analysis of neuronal excitability and oscillations. In R. R. Poznanski (Ed.), Modeling in the Neurosciences. From ionic channels to neural networks. Switzerland: Harwood Academic Publisher, Chapter 16.

Eccles, J. C., Llinas, R., & Sasaki, K. J. (1966). The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. Journal of Physiology (London), 182, 268–296.

Fitz Hugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1, 445–466.

Fukuda, M., Yamamoto, T., & Llinas, R. R. (1987). Simultaneous recordings from Purkinje cells of different folia in the rat cerebellum and their relation to movement. Society for Neuroscience Abstracts, 13, 603.

Fukuda, M., Yamamoto, T., & Llinas, R. R. (2001). The isochronic band hypothesis and climbing fiber regulation of motricity: an experimental study. European Journal of Neuroscience, 13, 315–326.

Gardiner, G. W. (1985). Handbook of stochastic methods for physics, chemistry and the natural sciences (2nd ed.). New York: Springer.

Giaquinta, A., Argentina, M., & Velarde, M. G. (2000). A simple generalized excitability model mimicking salient features of neuron dynamics. Journal of Statistical Physics, 101, 665–678.

Gottlieb, D. I. (1988). In R. R. Llinas (Ed.), GABAerig Neurons. The biology of the brain. From neurons to networks, New York: W.H. Freeman and company.

Haken, H. (1996). Principles of brain functioning. A synergetic approach to brain activity, behavior and cognition. Berlin: Springer.

Holden, A. V. (1976). Models of the stochastic activity of neurons. Berlin: Springer.

Hoppensteadt, F. C. (1986). An Introduction to the mathematics of neurons. Cambridge: Cambridge University Press.

Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Jouranl Bifurcation and Chaos, 10, 1171–1266.

Lamarre, Y., de Montigny, C., Dumont, M.,& Weiss, M. (1971). Harmaline induced rhythmic activity of cerebellar and lower brain stem neuron. Brain Research, 32, 246–250.

Lampl, I., & Yarom, Y. (1997). Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism. Neuroscience, 78, 325–341.

Lang, E. J., Sugihara, I., & Llinas, R. R. (1996). GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. Journal of Neurophysiology, 76, 255–275.

Latham, A., & Paul, D. H. (1971). Spontaneous activity of cerebellar Purkinje cells and their response to impulses in climbing fibers. Journal of Physiology (London), 212, 135–156.

Lee, S. G., Neiman, A., & Kim, S. (1998). Coherence resonance in a Hodgkin–Huxley neuron. Physical Review E, 57, 3292–3297.

Llinas, R. R. (1989). In S. Piergiorgio (Ed.), Electrophysiological properties of the olivocerebellar system. The olivocerebellar system in motor control, Berlin: Springer.

Llinas, R., Baker, R., & Sotelo, C. (1974). Electrotonic coupling between neurons in cat inferior olive. Journal of Neurophysiology, 37, 560–571.

Llinas, R. R., & Sasaki, K. (1989). The functional organization of the olivocerebellar system as examined by multiple purkinje cell recordings. European Journal of Neuroscience, 1, 587–602.

Llinas, R. R., & Simpson, J. I. (1981). Cerebellar control of movement. In A. L. Towe, & E. S. Luschei (Eds.), Handbook of behavioural neurobilogy, 5, motor coordination (pp. 231–302). New York: Plenum press.

Llinas, R. R., & Volkind, R. A. (1973). The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Experimental Brain Research, 18, 69–87.

Llinas, R. R., & Yarom, Y. (1981a). Electrophysiology of mammalian inferior olivary neuron in vitro. Different types of voltage-dependent ionic conductances. Journal of Physiology, 315, 549–567.

Llinas, R. R., & Yarom, Y. (1981b). Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurons in vitro. Journal of Physiology, 315, 569–584.

Llinas, R. R., & Yarom, Y. (1986). Oscillatory properties of guinea-pig inferior olivary neurons and their pharmacological modulation: an in vitro study. Journal of Physiology (London), 376, 163–182.

Llinas, R. R., & Welsh, J. P. (1993). On the cerebellum and motor learning. Current Opinions in Neurobiology, 3, 958–965.

Longtin, A. (1997). Autonomous stochastic resonance in bursting neurons. Physical Review E, 55, 868–876.

MacDonald, N. (1989). Biological delay systems: linear stability theory. Cambridge: Cambridge University Press.

Makarov, V. A., Nekorkin, V. I., & Velarde, M. G. (2001). Spiking behavior in a noise-driven system combining oscillatory and excitatory properties. Physical Review Letters, 86, 3431–3434.

Makarenko, V. I., & Llinas, R. (1998). Experimentally determined chaotic phase synchronization in neuronal system. Proceedings of National Academy of Sciences (USA), 95, 15747–15752.

Makarenko, V. I., Welsh, J. P., Lang, E. J., & Llinas, R. (1997). A new approach to the analysis of multidimensional neuronal activity: Markov random fields. Neural Networks, 10, 785–789.

Manganaro, G., Arena, P., & Fortuna, L. (1999). Cellular neural networks. Chaos, complexity and VLSI processing. Berlin: Springer.

Manor, Y., Rinzel, J., Segev, I., & Yarom, Y. (1997). Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. Journal Neurophysiology, 77, 2736–2752.

Mikhailov, A. S., & Calenbuhr, V. (2002). From cells to societies. Models of complex coherent action. New York: Springer.

Deposited On:24 Oct 2012 08:42
Last Modified:07 Feb 2014 09:36

Repository Staff Only: item control page