Biblioteca de la Universidad Complutense de Madrid

An Inductive Methodology for Data-Based Rules Building

Impacto

Rodríguez, Juan Tinguaro y Montero, Javier y Vitoriano, Begoña y Lopez, Victoria (2009) An Inductive Methodology for Data-Based Rules Building. In Algorithmic Decision Theory: First International Conference, ADT 2009, Venice, Italy, October 2009, Proceedings. Lecture Notes in Computer Science (5783). Springer-Verlag Berlin Heidelberg, Berlin, pp. 424-433. ISBN 978-3-642-04427-4

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

208kB

URL Oficial: http://www.springerlink.com/content/b650283049324378/fulltext.pdf




Resumen

Extraction of rules from databases for classification and decision tasks is an issue of growing importance as automated processes based on data are being required in these fields. An inductive methodology for data-based rules building and automated learning is presented in this paper. A fuzzy framework is used for knowledge representation and, through the introduction and the use of dual properties in the valuation space of response variables, reasons for and against the rules are evaluated from data. This make possible to use continuous DDT logic, which provides a more general and informative framework, in order to assess the validity of rules and build an appropriate knowledge base.


Tipo de documento:Sección de libro
Información Adicional:

Lecture Notes in Artificial Intelligence

Palabras clave:Rules induction; DDT logic; Fuzzy inference systems; Dual predicates
Materias:Ciencias > Matemáticas > Investigación operativa
Código ID:16858
Referencias:

Amo, A., Montero, J., Biging, G., Cutello, V.: Fuzzy classification systems. European Journal of Operational Research 156(2), 495–507 (2004)

Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg (1999)

Destercke, S., Guillaume, S., Charnomordic, B.: Building an interpretable fuzzy rule base from data using Orthogonal Least Squares. Application to a depollution problem. Fuzzy

Sets and Systems 158(18), 2078–2094 (2007)

Fortemps, P., Slowinski, R.: A graded quadrivalent logic for ordinal preference modelling:Loyola-like approach. Fuzzy Optimization and Decision Making 1(1), 93–111 (2002)

Fortemps, P., Greco, S., Slowinski, R.: Multicriteria decision support using rules that represent rough-graded preference relations. European J. Operational Research 188(1),206–223 (2008)

Hammer, P.L., Bonates, T.: Logical Analysis of Data - An overview: From Combinatorial Optimization to Medical Applications. Annals of Operations Research 148(1),203–225(2006)

Iliadis, L.S.: A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation. Environmental Modelling & Software 20, 613–621 (2005)

Mamdani, E.H.: Application of Fuzzy Algorithms for the Control of a Dynamic Plant.Proc. IEE 121(12), 1585–1588 (1974)

Montero, J., Gómez, D., Bustince, H.: On the relevance of some families of fuzzy sets.Fuzzy sets and systems 158(22), 2439–2442 (2007)

Novak, V.: Antonyms and linguistic quantifiers in fuzzy logic. Fuzzy Sets and Systems 124, 335–351 (2001)

Öztürk, M., Tsoukiàs, A.: Modelling uncertain positive and negative reasons in decision aiding. Decision Support Systems 43(4), 1512–1526 (2007)

Paradis, C., Willners, C.: Antonymy and negation—the boundness hypothesis. J. Pragmatics 38, 1051–1080 (2006)

Rodriguez, J.T., Vitoriano, B., Montero, J., Omaña, A.: A decision support tool for humanitarian organizations in natural disaster relief. In: Ruan, D., et al. (eds.) Computational Intelligence in Decision and Control, pp. 600–605. World Scientific, Singapore (2008)

Ruspini, E.H.: A new approach to clustering. Inform.Control 15, 22–32 (1969)

Tsoukiàs, A.: A first-order, four valued, weakly paraconsistent logic and its relation to rough sets semantics. Foundations of Computing and Decision Sciences 12, 85–108 (2002)

Yager, R.R.: Targeted e-commerce marketing using fuzzy intelligent agents. Intelligent Systems and their Applications 15(6), 42–45 (2000)

Depositado:25 Oct 2012 08:54
Última Modificación:25 May 2016 15:04

Sólo personal del repositorio: página de control del artículo