E-Prints Complutense

Estimates for the asymptotic behaviour of the constants in the Bohnenblust-Hille inequality

Impacto

Descargas

Último año

Muñoz-Fernández, Gustavo A. y Pellegrino, D. y Seoane-Sepúlveda, Juan B. (2012) Estimates for the asymptotic behaviour of the constants in the Bohnenblust-Hille inequality. Linear & Multilinear Algebra, 60 (5). pp. 573-582. ISSN 0308-1087

[img] PDF
Restringido a Sólo personal autorizado del repositorio

144kB

URL Oficial: http://www.tandfonline.com/doi/pdf/10.1080/03081087.2011.613833


URLTipo de URL
http://www.tandfonline.com/Editorial


Resumen

A classical inequality due to H. F. Bohnenblust and E. Hille states that for every positive integer n there is a constant C-n > 0 so that (Sigma(N)(i1,...,in=1) vertical bar U(e(i1), . . . , e(in))vertical bar(2n/n+1))(n+1/2n) <= C-n parallel to U parallel to for every positive integer N and every n-linear mapping U : l(infinity)(N) x . . x l(infinity)(N) -> C. The original estimates for those constants from Bohnenblust and Hille are C-n = n(n+1/2n)2(n-1/2). In this note we present explicit formulae for quite better constants, and calculate the asymptotic behaviour of these estimates, completing recent results of the second and third authors. For example, we show that, if C-R,C- (n) and C-C,C- (n) denote (respectively) these estimates for the real and complex Bohnenblust-Hille inequality then, for every even positive integer n, C-R,C-n/root pi = CC, n/root 2 = 2(n+2/8) . r(n) for a certain sequence {r(n)} which we estimate numerically to belong to the interval (1, 3/2) (the case n odd is similar). Simultaneously, assuming that {r(n)} is in fact convergent, we also conclude that lim(n ->infinity) C-R,C- n/C-R,C- n-1 = lim(n ->infinity) C-C,C- n/C-C,C- n-1 = 2(1/8).


Tipo de documento:Artículo
Palabras clave:Bohnenblust–Hille Inequality; Asymptotic growth Classification :
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:16876
Depositado:25 Oct 2012 08:08
Última Modificación:25 Nov 2016 12:34

Descargas en el último año

Sólo personal del repositorio: página de control del artículo