Complutense University Library

On the global structure of invariant regions of flows with asymptotically stable attractors

Giraldo, A. and Rodríguez Sanjurjo, José Manuel (1999) On the global structure of invariant regions of flows with asymptotically stable attractors. Mathematische Zeitschrift, 232 (4). pp. 739-746. ISSN 0025-5874

[img] PDF
Restricted to Repository staff only until 31 December 2020.

92kB

Official URL: http://www.springerlink.com/content/cept6432a88c12fh/fulltext.pdf

View download statistics for this eprint

==>>> Export to other formats



Item Type:Article
Uncontrolled Keywords:Shape theory; Topological dynamics
Subjects:Sciences > Mathematics > Geometry
Sciences > Mathematics > Topology
ID Code:16879
References:

N.P.Bhatia.: Attraction and nonsaddle sets in dynamical systems. J. Differential Equations 8, 229–249 (1970)

N.P.Bhatia, A.Lazer and G.P.Szego.: On global weak attractors in dynamical systems. J. Math. Anal. Appl. 16, 544–552 (1966)

N.P.Bhatia and G.P.Szego.: Stability theory of dynamical systems (Grundlehren der Math. Wiss. 161) Springer-Verlag, Berlin, 1970.

S.A.Bogatyi and V.I.Gutsu.: On the structure of attracting compacta. Differentsial’nye Uravneniya 25, 907–909 (1989) (in russian)

K.Borsuk.: Theory of Retracts (Monografie Matematyczne 44) Polish Scientific Publishers, Warszawa, 1967.

K.Borsuk.: On movable compacta. Fund. Math. 66, 137–146 (1969)

K.Borsuk.: Theory of shape (Monografie Matematyczne 59) Polish Scientific Publishers, Warszawa, 1975.

J.M.Cordier and T.Porter.: Shape theory. Categorical methods of approximation (Ellis Horwood Series: Mathematics and its Applications) Ellis Horwood Ltd, Chichester, 1989.

Dydak and J.Segal.: Shape theory: An introduction (Lecture Notes in Math. 688) Springer-Verlag, Berlin, 1978.

B.M.Garay.: Strong cellularity and global asymptotic stability. Fund. Math. 138, 147–154 (1991)

B.Gunther and J.Segal.: Every attractor of a flow on a manifold has the shape of a finite polyhedron. Proc. Amer. Math. Soc. 119, 321–329 (1993)

H.M.Hastings.: Shape theory and dynamical systems, in: N.G.Markley andW.Perizzo.: The structure of attractors in dynamical systems, (Lecture Notes in Math., vol. 668) Springer-Verlag, Berlin, 1978, pp. 150–160.

S.T.Hu.: Theory of Retracts. Wayne State University Press, Detroit, 1967.

S.Mardesic and J.Segal.: Shape theory. North Holland, Amsterdam, 1982.

J.Milnor.: On the concept of Attractor. Commun. Math. Phys. 99, 177–195 (1985)

J.W.Robbin and D.Salamon.: Dynamical systems, shape theory and the Conley index. Ergod. Th. & Dynam. Sys. 8 , 375–393 (1988)

J.T.Rogers, Jr.: The shape of a cross-section of the solution funnel of an ordinary differential equation. Illinois J. Math. 21, 420–426 (1977)

J.M.R.Sanjurjo.: Selections of multivalued maps and shape domination. Math. Proc. Cambridge Philos. Soc. 107, 493–499 (1990)

J.M.R.Sanjurjo.: An intrinsic description of shape. Trans. Amer. Math. Soc. 329, 625–636 (1992)

J.M.R.Sanjurjo.: Multihomotopy, Cech spaces of loops and shape groups. Proc. London Math. Soc. (3) 69, 330–344 (1994)

J.M.R.Sanjurjo.: On the structure of uniform attractors. Journal of Math. Anal. Appl. 192, 519–528 (1995)

P.Saperstone.: Semidynamical systems in infinite dimensional spaces (Applied Math. Sciences 37) Springer-Verlag, Berlin, 1981.

P.Saperstone and M.Nishihama.: Continuity of the limit set maps in semidynamical systems. J. Differential Equations 23, 183–199 (1977)

C.Tezer.: Shift equivalence in homotopy. Math. Z. 210, 197–201 (1992)

J.Van Mill.: Infinite-dimensional topology. North Holland, Amsterdam, 1989.

Deposited On:25 Oct 2012 10:02
Last Modified:07 Feb 2014 09:37

Repository Staff Only: item control page