Mendoza Casas, José
(1982)
*Barrelledness conditions on S(Σ;E) and B(Σ;E).*
Mathematische Annalen, 261
(1).
pp. 11-22.
ISSN 0025-5831

PDF
Restricted to Repository staff only until 31 December 2020. 534kB |

Official URL: http://www.springerlink.com/content/x35m3k7433761318/

## Abstract

Let Ω be a nonempty set, and let Σ be a field of subsets of Ω. If E is a locally convex space we denote by S(Σ;E) the vector space of all Σ-simple functions defined on Ω with values in E, and by B(Σ;E) the vector space of all functions defined on Ω with values in E which are uniform limits of Σ-simple functions. We give some results characterizing when the spaces S(Σ;E) and B(Σ;E) endowed with the uniform convergence topology are barrelled or infrabarrelled.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | uniform convergence topology; barrelled; infrabarrelled; uniform limit of vector valued simple functions |

Subjects: | Sciences > Mathematics > Functional analysis and Operator theory |

ID Code: | 16891 |

References: | Diestel, J., Uhl, J.J., Jr.: Vector measures. Mathematical surveys. No. 15. Providence: American Mathematical Society 1977 Hollstein, R.: Über die Tonneliertheit von lokalkonvexen Tensorprodukten. Manuscripta Math.22, 7-12 (1977) Hollstein, R.: Permanence properties ofC(X;E) (to appear) Horváth, J.: Topological vector spaces and distributions. London, Amsterdam, Paris: Addison Wesley 1966 Köthe, G.: Topological vector spaces I. Berlin, Heidelberg, New York: Springer 1969 Marquina, A., Sanz Serna, J.M.: Barrelledness conditions onc o (E). Arch. Math.31 589-596 (1978) Mendoza, J.: Barrelledness onc o (E). Arch. Math. (to appear) Mendoza, J.: Necessary and sufficient conditions forC(X;E) to be barrelled or infrabarrelled. Simon Stevin (to appear) Mujica, J.: Spaces of continuous functions with values in an inductive limit (to appear) Pietsch, A.: Nuclear locally convex spaces. Berlin, Heidelberg, New York: Springer 1972 Schmets, J.: Espaces de fonctions continues. Lecture Notes in Mathematics. Vol. 519. Berlin, Heidelberg, New York: Springer 1976 Schmets, J.: An example of the barrelled space associated toC(X;E). Lecture Notes in Mathematics, Vol. 843, pp. 561-571. Berlin, Heidelberg, New York: Springer 1981 Shuchat, A.H.: Integral representation theorems in topological vector spaces. Trans. Am. Math. Soc.172, 373-397 (1972) Swong, K.: A representation theory of continuous linear maps. Math. Ann.155, 270-291 (1964) |

Deposited On: | 26 Oct 2012 08:21 |

Last Modified: | 13 Nov 2013 16:25 |

Repository Staff Only: item control page