E-Prints Complutense

Fuzzy classification improvement by a pre-perceptual labelled segmentation algorithm

Impacto

Descargas

Último año

Amo, Ana del y Sobrevilla, P. y Montseny, E. y Montero, Javier (2004) Fuzzy classification improvement by a pre-perceptual labelled segmentation algorithm. In NAFIPS 2004: Ammual meeting of the north american fuzzy information processing society,vols 1and 2: fuzzy sets in the heart of the canadianI rockies. IEEE Conference Publications, 1 . IEEE, Banff, Canada, pp. 486-490. ISBN 0-7803-8376-1

[img] PDF
Restringido a Sólo personal autorizado del repositorio

443kB

URL Oficial: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1336331


URLTipo de URL
http://ieeexplore.ieee.orgInstitución


Resumen

The goal of this paper is to present how two different image processing approaches can be enhanced by merging both methodologies. We will see how the results of a perceptual labelled segmentation methodology [7] can be improved by applying a fuzzy classification algorithm [2] based on a fuzzy outranking methodology [9] as a postprocessing algorithm, and viceversa. A comparison of the individual algorithms with the combination of both algorithms will be presented in order to demonstrate the improvement. Color Bone Marrow (1) images will be used. The objective is to detect White Blood Cells. The detection of white blood cells in bone marrow microscopic images presents big difficulties because of the great variance in their characteristics and also because of staining and illumination inconsistences. On the other hand, the maturity classes of white blood cells actually represents a continuum; cells frequently overlap each other, and there is a fairly wide variation in size and shape of nucleus and cytoplasm regions within given cell classes.


Tipo de documento:Sección de libro
Información Adicional:

Annual Meeting of the North-American-Fuzzy-Information-Processing-Society
JUN 27-30, 2004

Palabras clave:Computer Science; Artificial Intelligence; Computer Science; Information Systems
Materias:Ciencias > Informática > Inteligencia artificial
Código ID:16941
Depositado:31 Oct 2012 09:29
Última Modificación:19 Abr 2016 16:29

Descargas en el último año

Sólo personal del repositorio: página de control del artículo