Complutense University Library

Automorphisms of moduli spaces of symplectic bundles.

Biswas, Indranil and Gómez , Tomás L. and Muñoz, Vicente (2012) Automorphisms of moduli spaces of symplectic bundles. International Journal Mathematics, 23 (5). p. 1250052. ISSN 0129-167X

[img] PDF
Restricted to Repository staff only until 2020.

260kB

Official URL: http://www.worldscinet.com/ijm/ijm.shtml

View download statistics for this eprint

==>>> Export to other formats

Abstract

Let X be an irreducible smooth complex projective curve of genus g >= 4. Fix a line bundle L on X. Let M-Sp (L) be the moduli space of semistable symplectic bundles (E,(sic) : E circle times E -> L) on X, with the symplectic form taking values in L. We show that the automorphism group of M-Sp (L) is generated by the automorphisms of the form E bar right arrow E circle times M, where M-2 congruent to O-X, together with the automorphisms induced by automorphisms of X.


Item Type:Article
Uncontrolled Keywords:Moduli space; Symplectic bundle; Automorphism; Higgs bundle; Complex projective curve
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:16944
References:

A. Beauville, M. S. Narasimhan and S. Ramanan, Spectral curves and the generalised theta divisor, Jour. Reine U. N. Bhosle, Generalized parabolic bundles and applications–II, Proc. Indian Acad. Sci.(Math. Sci.) 106 (1996), 403–420.

I. Biswas and T. L. Gomez, Hecke correspondence for symplectic bundles with application to the Picard Bundles, Inter. Jour. Math. 17 (2006), 45–63.

I. Biswas and N. Hoffmann, A Torelli theorem for moduli spaces of principal bundles over a curve, arXiv:1003.4061.

J. Draisma, H. Kraft and J. Kuttler, Nilpotent subspaces of maximal dimension in semi-simple Lie algebras, Compos.Math. 142 (2006), 464–476.

G. Faltings, Stable G-bundles and projective connections,Jour. Algebraic Geom. 2 (1993)507–568.

N. J. Hitchin, Stable bundles and integrable systems, Duke Math. Jour. 54 (1987), 91–114.

J.-M. Hwang and S. Ramanan, Hecke curves and Hitchin discriminant, Ann. Sci. Ecole Norm. Sup. 37 (2004), 801–817.

A. Kouvidakis and T. Pantev, The automorphism group of the moduli space of semistable vector bundles, Math. Ann. 302 (1995), 225–268.

G. Laumon, Un analogue global du cˆone nilpotent, Duke Math. J. 57 (1988), 647–671.

C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety, II, Publ. Math. I.H.E.S. 80 (1995), 5–79.

Deposited On:31 Oct 2012 09:38
Last Modified:07 Feb 2014 09:38

Repository Staff Only: item control page