Biblioteca de la Universidad Complutense de Madrid

Density and finiteness. A discrete approach to shape


Giraldo, A. y Rodríguez Sanjurjo, José Manuel (1997) Density and finiteness. A discrete approach to shape. Topology and its Applications, 76 (1). pp. 61-77. ISSN 0166-8641

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial:


We show in this paper that the category of shape can be modelled in discrete terms using maps defined in dense subsets of compacta. This approach to shape provides in addition a characterization of the shape of compacta which does not require external elements and uses only continuous single-valued functions, in contrast with the existing internal characterizations of shape. As an application, we prove a connection between the notion of shape image, due to Lisica, and the basic notion of omega limit of a dynamical system.

Tipo de documento:Artículo
Palabras clave:Density: Discrete map: Shape category; Shape image: Omega limit: Lyapunov stability
Materias:Ciencias > Matemáticas > Geometría
Ciencias > Matemáticas > Topología
Código ID:16962

N.P. Bhatia and G.P. Szego, Stability theory of dynamical systems, Grundlehren Math. Wiss. 161 (Springer, Berlin, 1970).

K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968) 223-254.

K. Borsuk, On movable compacta, Fund. Math. 66 (1969) 137-146.

K. Borsuk, Theory of Shape. Monogratie Matematyczne 59 (Polish Scientitic Publishers, Warszawa, 1975).

Z. Cerin. Shape theory intrinsically. Publ. Mat. 37 (1993) 317-334.

Z. Cerin. Proximate topology and shape theory, Proc. Roy. Sot. Edinburgh I25 (1995) 595-615.

Z. Cerin. Equivariant shape theory, Math. Proc. Cambridge Philos. Sot. I I7 (1995) 303-320.

J.M. Cordier and T. Porter, Shape Theory. Categorical Methods of Approximation, Ellis Horwood Series: Mathematics and its Applications (Ellis Horwood, Chichester, 1989).

J. Dydak and J. Segal. Shape Theory: An Introduction, Lecture Notes in Math. 688 (Springer, Berlin, 1978).

J. Dydak and J. Segal, A list of open problems in shape theory, in: J. van Mill and G.M. Reed. eds., Open problems in Topology (North-Holland, Amsterdam. 1990) 457-467.

J.E. Felt, E-continuity and shape, Proc. Amer. Math. Sot. 46 (1974) 426430.

R.H. Fox, On shape. Fund. Math. 74 ( 1972) 47-7 I.

A. Giraldo and J.M.R. Sanjurjo, Strong multihomotopy and Steenrod loop spaces, J. Math. Sot. Japan 47 (1995) 475489.

B. Gunther and J. Segal. Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Sot. I I9 (1993) 321-329.

R.W. Kieboom. An intrinsic characterization of the shape of paracompacta by means of noncontinuous single-valued maps. Bull. Belg. Math. Sot. I (1994) 701-71 I.

J.T. Lisica, Strong shape theory and multivalued maps, Glas. Mat. I8 (1983) 371-382.

S. MardeSic and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (197 I) 31-59.

S. MardeSii- and J. Segal. Equivalence of the Borsuk and the ANR-system approach to shapes. Fund. Math. 72 (1971) 61-68.

S. MardeSiC and J. Segal. Shape Theory (North-Holland. Amsterdam, 1982).

M.A. Moron and F.R. Ruiz del Portal. Multivalued maps and shape for paracompacta. Math. Japon. 39 (1994) 489-500.

M.A. Moron and F.R. Ruiz de1 Portal, Shape as a Cantor completion process, Math. Z., to appear.

P. Mrozik. Some applications of lattice theory to shape theory. Arch. Math. 47 ( 1986) 243-250.

J.M.R. Sanjurjo. A non-continuous description of the shape category of compacta, Quart. J. Math. Oxford (2) 40 (1989) 35 1-359.

J.M.R. Sanjurjo, Multihomotopy sets and transformations induced by shape, Quart, J. Math. Oxford (2) 42 ( 1991) 489-499.

J.M.R. Sanjurjo. An intrinsic description of shape. Trans. Amer. Math. Sot. 329 (1992) 625-636.

J.M.R. Sanjurjo. Multihomotopy, Tech spaces of loops and shape groups, Proc. London Math. Sot. (3) 69 (1994) 330-344.

J.M.R. Sanjurjo, On the structure of uniform attractors, J. Math. Anal. Appl. I52 (1995) 519-528.

P. Saperstone. Semidynamical Systems in Infinite Dimensional Spaces. Appl. Math. Sci. 37 (Springer. Berlin. I98 I ).

Depositado:31 Oct 2012 10:44
Última Modificación:07 Feb 2014 09:39

Sólo personal del repositorio: página de control del artículo