Complutense University Library

Torelli theorem for the moduli space of framed bundles

Biswas, Indranil and Gomez, Tomas and Muñoz, Vicente (2010) Torelli theorem for the moduli space of framed bundles. Mathematical Proceedings of the Cambridge Philosophical Society, 148 (3). pp. 409-423. ISSN 0305-0041

[img] PDF
Restricted to Repository staff only until 2020.

511kB

Official URL: http://journals.cambridge.org/abstract_S0305004109990417

View download statistics for this eprint

==>>> Export to other formats

Abstract

Let X be an irreducible smooth complex projective curve of genus g >= 2, and let x is an element of X be a fixed point. Fix r > 1, and assume that g > 2 if r = 2. A framed bundle is a pair (E, phi), where E is coherent sheaf on X of rank r and fixed determinant xi, and phi: E(x) > C(r) is a non-zero homomorphism. There is a notion of (semi)stability for framed bundles depending on a parameter tau > 0, which gives rise to the moduli space of tau-semistable framed bundles M(tau). We prove a Torelli theorem for M(tau), for tau > 0 small enough, meaning, the isomorphism class of the one pointed curve (X, x), and also the integer r, are uniquely determined by the isomorphism class of the variety M(tau).

Item Type:Article
Uncontrolled Keywords:Framed bundles; Smooth curves; Moduli
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:17012
References:

M. F. ATIYAH. Vector bundles over an elliptic curve. Proc. London Math. Soc. (3) 7 (1957), 414–452.

M. F. ATIYAH and R. BOTT. The Yang-Mills equations over Riemann surfaces. Roy. Soc. London Philos. Trans. Ser. A 308 (1982), 523–615.

I. BISWAS, L. BRAMBILA-PAZ and P. E. NEWSTEAD. Stability of projective Poincare and Picard bundles. Bull. Lond. Math. Soc. 41 (2009), no. 3, 458–472.

I. BISWAS and T. GOMEZ. Simplicity of stable principal sheaves. Bull. Lond. Math. Soc. 40 (2008),163–171.

S. B. BRADLOW, O. GARCIA-PRADA, V. MERCAT, V. MUÑOZ and P. E. NEWSTEAD. On the geometry of moduli spaces of coherent systems on algebraic curves. Internat. J. Math. 18 (2007),411–453.

L. BRAMBILA-PAZ, I. GRZEGORCZYK and P. E.NEWSTEAD.Geography of Brill-Noether loci for small slopes. J. Alg. Geom. 6 (1997), 645–669.

J.-M. DREZET andM. S. NARASIMHAN. Groupe de Picard des varietes de modules de fibres semistables sur les courbes algebriques. Invent. Math. 97 (1989), 53–94.

N.HITCHIN. Stable bundles and integrable systems. Duke Math. J. 54 (1987), 91–114.

D. HUYBRECHTS and M. LEHN. Framed modules and their moduli. Internat. J. Math. 6 (1995),297–324.

D.HUYBRECHTS and M. LEHN. The geometry of moduli spaces of sheaves. Aspects of Mathematics E31, (Vieweg,Braunschweig/Wiesbaden 1997).

A.KOUVIDAKIS and T. PANTEV. The automorphism group of the moduli space of semistable vector bundles. Math. Ann. 302 (1995), 225–268.

D. LUNA. Slices etales. Sur les groupes alg´ebriques. pp. 81–105. Bull. Soc. Math. France, Paris,Memoire 33 Soc.Math. France, Paris, 1973.

M. MARUYAMA. Openness of a family of torsion free sheaves. Jour. Math. Kyoto Univ. 16 (1976),627–637.

M. S. NARASIMHAN and S. RAMANAN. Geometry of Hecke cycles I, C. P. Ramanujam – a tribute. pp. 291–345. Tata Inst. Fund. Res. Studies in Math., 8(Springer, 1978).

C. S. SESHADRI. Fibres vectoriels sur les courbes algebriques. Ast´erisque 96 (1982), 209 pp.

C. SIMPSON. Moduli of representations of the fundamental group of a smooth projective variety I.Publ. Math. IHES 79 (1994), 47–129.

A. N. TYURIN. Classification of vector bundles over an algebraic curve of arbitrary genus. Izv. Akad.Nauk SSSR Ser. Mat. 29 (1965), 657–688.

Deposited On:06 Nov 2012 12:12
Last Modified:07 Feb 2014 09:40

Repository Staff Only: item control page