Biblioteca de la Universidad Complutense de Madrid

Geometry of Homogeneous Polynomials on non Symmetric Convex Bodies

Impacto



Muñoz-Fernández, Gustavo A. y Revesz, Szilard Gy. y Seoane-Sepúlveda, Juan B. (2009) Geometry of Homogeneous Polynomials on non Symmetric Convex Bodies. Mathematica Scandinavica, 105 (1). pp. 147-160. ISSN 0025-5521

[img] PDF
Restringido a Sólo personal autorizado del repositorio

466kB

URL Oficial: http://www.renyi.hu/~revesz/MunozReveszSeoane.pdf




Resumen

If Delta stands for the region enclosed by the triangle in R(2) of vertices (0, 0), (0, 1) and (1, 0) (or simplex for short), we consider the space P((2)Delta) of the 2-homogeneous polynomials on R(2) endowed with the norm given by parallel to ax(2) + bxy + cy(2)parallel to(Delta) := sup{vertical bar ax(2) + bxy + cy(2)vertical bar : (x, y) is an element of Delta} for every a, b, C E R. We investigate some geometrical properties of this norm. We provide an explicit formula for parallel to.parallel to(Delta), a full description of the extreme points of the corresponding unit ball and a parametrization and a plot of its unit sphere. Using this geometrical information we also find sharp Bernstein and Markov inequalities for P((2)A) and show that a classical inequality of Martin does not remain true with the same constant for homogeneous polynomials on non symmetric convex bodies.


Tipo de documento:Artículo
Palabras clave:Convex bodies; extreme points; homogeneous polynomials
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:17013
Referencias:

R. M. Aron and M. Klimek. Supremum norms for quadratic polynomials. Arch. Math. (Basel) 76 (2001), 73-80.

M. Baran. Bernstein type theorems for compact sets in Rn revisited. J. Approx. Th. 79(1994), 190-198.

D. Burns, N. Levenberg, S. Ma'u, Sz. Révész. Monge-Ampµere Measures for Convex Bodies and Bernstein-Markov Type Inequalities, arXiv:0705.1095v1.

N. G. ChebotarÄev. On a general criterion of the minimax, C. R. (Doklady) Acad. Sci. URSS (N.S.), 39(1943), p. 341.

Y. S. Choi and S. G. Kim. The unit ball of P(2l2 2). Arch. Math. (Basel) 76(1998), 472{480.

Y. S. Choi and S. G. Kim. Smooth points of the unit ball of the space P(2l1). Results Math. 36 (1999), 26-33.

Y. S. Choi and S. G. Kim. Exposed points of the unit balls of the spaces P(2l2 p) (p = 1; 2;1). Indian J. Pure Appl. Math. 35 (2004), 37-41.

B. C. Grecu. Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces. J. Math. Anal. Appl. 293 (2004), no. 1, 578-588.

B. C. Grecu. Extreme 2-homogeneous polynomials on Hilbert spaces. Quaest. Math. 25 (2002), no. 4, 421-435.

B. C. Grecu. Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < 1. J. Math. Anal. Appl. 273 (2002), no. 1, 262-282.

B. C. Grecu. Smooth 2-homogeneous polynomials on Hilbert spaces. Arch. Math. (Basel) 76 (2001), no. 6, 445-454.

B. C. Grecu. Geometry of three-homogeneous polynomials on real Hilbert

spaces. J. Math. Anal. Appl. 246 (2000), no. 1, 217-229.

B. C. Grecu, G. A. Muñoz-Fernández and J. B. Seoane-Sepúlveda. The unit ball of the complex P(3H). Preprint, 2007.

L. A. Harris, Multivariate Markov polynomial inequalities and Chebyshev nodes J. Math. Anal. Appl. 338, no. 1, February 2008, pp. 350-357.

G. Klimek and M. Klimek. Discovering curves and surfaces with Maple. New York, 1997.

A. G. Konheim and T. J. Rivlin, Extreme points of the unit ball in a space of real polynomials. Amer. Math. Monthly 73 (1966), 505-507.

R. S. Martin. Ph. D. Thesis. Cal. Inst. of Tech. 1932.

L. B. Milev, Sz. Gy. Révész, Bernstein's inequality for multivariate polynomials on the standard simplex, J. Inequalities Appl., 2005:2 (2005), 145{163.

G. A. Muñoz-Fernández and Y. Sarantopoulos. Bernstein and

Markov-type inequalities for polynomials on real Banach spaces. Math. Proc.Camb. Phil. Soc. 133(2002), 515-530.

G. A. Muñoz-Fernández and J. B. Seoane-Sepúlveda. Geometry of Banach spaces of Trinomials. J. Math. Anal. Appl. 340 (2008), 1069-1087.

G. A. Muñoz-Fernández, Y. Sarantopoulos and J. B. Seoane-

Sepúlveda. An application of the Krein-Milman Theorem to Bernstein and Markov inequalities. To appear in J. Convex Anal.

D. Nadzhmiddinov and Yu. N. Subbotin. Markov inequalities for polynomials on triangles. (Russian) Mat. Zametki 46 (1989), 2, 76{82, 159; translation in Math. Notes 46 (1989), 1-2, 627-631.

S. Neuwirth. The maximum modulus of a trigonometric trinomial. arXiv:math/FA.0703236v1.

S. Révész. Minimization of maxima of nonnegative and positive definite cosine polynomials with prescribed first coefficients. Acta Sci. Math. (Szeged), 60 (1995), 589-608.

Y. Sarantopoulos. Bounds on the derivatives of polynomials on Banach spaces. Math. Proc. Camb. Phil. Soc. 110(1991), 307-312.

V. I Skalyga, Bounds on the derivatives of polynomials on entrally symmetric convex bodies, (Russian), Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), no. 3, 179192; translation in Izv. Math. 69 (2005), no. 3, 607621.

E.V. Voronovskaya. The functional method and its applications. Appendix: V.A. Gusev: Derivative functionals of an algebraic polynomial and V. A. Markov's theorem. American Mathematical Society (AMS) VI 203 (1970).

Depositado:05 Nov 2012 11:37
Última Modificación:25 Nov 2016 12:37

Sólo personal del repositorio: página de control del artículo