E-Prints Complutense

On the vertices of the k-additive core



Último año

Grabisch, Michel y Miranda Menéndez, Pedro (2008) On the vertices of the k-additive core. Discrete Mathematics, 308 (22). pp. 5204-5217. ISSN 0012-365X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial: http://www.sciencedirect.com/science/journal/0012365X

URLTipo de URL


The core of a game upsilon on N, which is the set of additive games phi dominating upsilon such that phi(N) = upsilon(N), is a central notion in cooperative game theory, decision making and in combinatorics, where it is related to submodular functions, matroids and the greedy algorithm. In many cases however, the core is empty, and alternative solutions have to be found. We define the k-additive core by replacing additive games by k-additive games in the definition of the core, where k-additive games are those games whose Mobius transform vanishes for subsets of more than k elements. For a sufficiently high value of k, the k-additive core is nonempty, and is a convex closed polyhedron. Our aim is to establish results similar to the classical results of Shapley and Ichiishi on the core of convex games (corresponds to Edmonds' theorem for the greedy algorithm). which characterize the vertices of the core.

Tipo de documento:Artículo
Palabras clave:Cooperative games; Core; k-additive games; Vertices
Materias:Ciencias > Estadística > Teoría de Juegos
Código ID:17032
Depositado:06 Nov 2012 12:20
Última Modificación:07 Feb 2014 09:40

Descargas en el último año

Sólo personal del repositorio: página de control del artículo