E-Prints Complutense

On the polytope of non-additive measures

Impacto

Descargas

Último año

Combarro, Elías F. y Miranda Menéndez, Pedro (2008) On the polytope of non-additive measures. Fuzzy Sets and Systems, 159 (16). pp. 2145-2162. ISSN 0165-0114

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

822kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S016501140700557X


URLTipo de URL
http://www.sciencedirect.comEditorial


Resumen

In this paper we deal with the problem of studying the structure of the polytope of non-additive measures for finite referential sets. We give a necessary and sufficient condition for two extreme points of this polytope to be adjacent. We also show that it is possible to find out in polynomial time whether two vertices are adjacent. These results can be extended to the polytope given by the convex hull of monotone Boolean functions. We also give some results about the facets and edges of the polytope of non-additive measures; we prove that the diameter of the polytope is 3 for referentials of three elements or more. Finally, we show that the polytope is combinatorial and study the corresponding properties; more concretely, we show that the graph of non-additive measures is Hamilton connected if the cardinality of the referential set is not 2.


Tipo de documento:Artículo
Palabras clave:Non-additive measures; Monotone Boolean functions; Adjacency; Complexity; Diameter; Combinatorial polytopes; Stack filters
Materias:Ciencias > Matemáticas > Topología
Código ID:17033
Depositado:06 Nov 2012 12:22
Última Modificación:07 Feb 2014 09:40

Descargas en el último año

Sólo personal del repositorio: página de control del artículo