Biblioteca de la Universidad Complutense de Madrid

Spiking behavior in a noise-driven system combining oscillatory and excitatory properties


Makarov, Valeri A. y Nekorkin, Vladimir I. y Velarde, Manuel G. (2001) Spiking behavior in a noise-driven system combining oscillatory and excitatory properties. Physical Review Letters, 86 (15). pp. 3431-3434. ISSN 0031-9007

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial:


We show that firing activity (spiking) can be regularized by noise in a FitzHugh-Nagumo (FHN) neuron model when operating slightly beyond the supercritical Hopf bifurcation (in the "canard" region). We also provide the conditions for imperfect phase Locking between interspike intervals and low amplitude quasiharmonic oscillations. For the imperfect phase locking no need exists of an external signal as it follows from the FHN intrinsic dynamics.

Tipo de documento:Artículo
Palabras clave:Aperiodic stochastic resonance; Coherence resonance; Excitable systems; Inferior olive; Neurons; Modulation; Mechanism
Materias:Ciencias Biomédicas > Biología > Neurociencias
Código ID:17044

R. Llinas and Y. Yarom, J. Physiol. 376, 163 (1986) .

L. S. Benardo and R. E. Foster, Brain Res. Bull. 17, 773 (1986) .

K. Sasaki, J. M. Bower, and R. Llinas, Eur. J. Neurosci. 1, 572 (1989).

J. J. Collins, T. T. Imhoff, and P. Grigg, Nature (London) 383, 770 (1996) .

R. M. Siegel, Physica (Amsterdam) 42D, 385 (1990).

H. Haken, Principles of Brain Functioning (Springer-Verlag, Berlin,1996).

R. FitzHugh, Biophys. J. 1, 445 (1961) .

F. C. Hoppensteadt, An Introduction to the Mathematics of Neurons (Cambridge Univ. Press, NY,1986).

K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, and F. Moss, Phys. Rev. Lett. 72, 2125 (1994) .

J. J. Collins, C. C. Chow, and T. T. Imhoff, Phys. Rev. E 52, R3321 (1995) .

J. Milton, Dynamics of Small Neural Populations (American Math. Soc., Providence, Rhode Island,1996).

A. Longtin, Phys. Rev. E 55, 868 (1997).

C. Eichwald and J. Walleczek, Phys. Rev. E 55, R6315 (1997) .

A. S. Pikovsky and J. Kurths, Phys. Rev. Lett. 78, 775 (1997) .

S. G. Lee, A. Neiman, and S. Kim, Phys. Rev. E 57, 3292 (1998) .

J. P. Baltanas and J. M. Casado, Physica (Amsterdam) 122D, 231 (1998).

C. Hauptmann, F. Kaiser, and C. Eichwald, Int. J. Bifurcation Chaos Appl. Sci. Eng. 6, 1159 (1999).

R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453 (1981).

C. Nicolis and G. Nicolis, Tellus 33, 225 (1981).

L. Gammaitoni, P. Hanggi, D. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998) .

R. R. Llinas and K. D. Walton, in The Synaptic Organization of the Brain,G. M. Shepherd (Oxford Univ. Press, Oxford,1998), Chap. 7.

F. Dumortier, in Bifurcations and Periodic Orbits of Vector Fields,D. Schlomiuk (Kluwer Academic Press, Dordrecht,1993), pp. 19–73.

P. Glendinning, Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations (Cambridge Univ. Press, NY,1994), Chap. 8.10.

R. F. Fox, I. R. Gatland, R. Roy, and G. Vemuri, Phys. Rev. A 38, 5938 (1988) .

J. M. Kowalski, G. L. Albert, B. K. Rhoades, and G. W. Gross, Neural Netw. 5, 805 (1992).

Y. Manor, J. Rinzel, I. Segev, and Y. Yarom, J. Neurophysiol. 77, 2736 (1997) .

Depositado:07 Nov 2012 09:37
Última Modificación:28 Jun 2016 14:47

Sólo personal del repositorio: página de control del artículo