Rodríguez Sanjurjo, José Manuel
(1990)
*Selections of multivalued maps and shape domination.*
Mathematical Proceedings of the Cambridge Philosophical Society, 107
(Part 3).
pp. 493-499.
ISSN 0305-0041

PDF
Restricted to Repository staff only until 31 December 2020. 900kB |

Official URL: http://journals.cambridge.org/abstract_S0305004100068778

## Abstract

Given an approximate mapping f − ={f k }:X→Y between compacta from the Hilbert cube [K. Borsuk, Fund. Math. 62 (1968), 223–254, the author associates with f − a (u.s.c.) multivalued mapping F:X→Y . If F is single-valued, F and f − induce the same shape morphism, S(F)=S(f − ) . If Y is calm [Z. Čerin, Pacific J. Math. 79 (1978), no. 1, 69–91 and all F(x) , x∈X , are sufficiently small sets, then the existence of a selection for F implies that S(f − ) is generated by some mapping X→Y . If F is associated with f − and admits a coselection (a mapping g:Y→X such that y∈F(g(y)) , for y∈Y ), then S(f − ) is a shape domination and therefore sh(Y)≤sh(X) . If Y is even an FANR, then every sufficiently small multivalued mapping F:X→Y , which admits a coselection, induces a shape domination S(F) .

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Shape theory, Set-valued maps, Selections |

Subjects: | Sciences > Mathematics > Geometry Sciences > Mathematics > Topology |

ID Code: | 17050 |

References: | D. F. ADDIS and J. H. GRESHAM. A class of infinite dimensional spaces. Part 1: Dimension theory and Alexandroff’s problem. Fund. Math. 101 (1978), 195-205. K. BORSUK. Concerning homotopy properties of compacta. Fund. Math. 62 (1968), 223-254. K. BORSUK. Theory of Shape. Monogr. Mat. no. 59 (Polish Scientific Publishers, 1975). K. BORSUK. Some quantitative properties of shapes. Fund. Math. 93 (1976), 197-212. Z. CBRIS. Homotopy properties of locally compact spaces at infinity-calmness and smoothness. Pacific J. Math. 79 (1978), 69-91. Z. CERIN and A. P. SOSTAK. Some remarks on Borsuk's fundamental metric. In Proceedings Colloquium on Topology, Budapest 1978, Colloq. Soc. Janos Bolvay no. 23 (North-Holland, 1980). pp. 233-252 Z. CERIN and T. WATANABE. Borsuk fixed point theorem for multivalued maps. In Geometric Topology and Shape Theory (eds. S. Mardesic and J. Segal), Lecture Notes in Math. vol. 1283 (Springer-Verlag, 1987), pp. 30-37. J. DYDAK and J. SEGAL. Shape Theory: An Introduction. Lecture Notes in Math. vol. 688 (Springer-Verlag, 1978). W. E. HAVER. A covering property for metric spaces. In Proceedings of Topology Conference (eds. R. F. Dickman and P. Hatcher), Lectures Notes in Math. vol. 375 (Springer-Verlag 1974), pp. 108-113. Y. KODAMA. Multivalued maps and shape. Glasnik Mat. 12 (32) (1977), 133-142, A. KOYAMA. Various compact multi-retracts and shape theory. Tsulcuba J. Math. 6 (1982), 319-332. J. T. LISICA. Strong shape theory and multivalued maps. Glasnik Mat. 18 (38) (1983), 371-382. S. MARDESIC and J. SEGAL. Shape Theory (North Holland, 1982). J. M. R. SANJURJO. On quasi-domination of compacta. Colloq. Math. 48 (1984), 213-217. S. SPIEZ. Movability and uniform movability. Bull. Acad. Polon. Sci. Math. 22 (1974), 43-45. A. SUSZYCKI. Retracts and homotopies for multi-maps. Fund. Math. 95 (1983), 9-26. |

Deposited On: | 07 Nov 2012 11:21 |

Last Modified: | 07 Feb 2014 09:40 |

Repository Staff Only: item control page