Distribution of platinum-group and chalcophile elements in the Aguablanca Ni-Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study

R. Piña a,* F. Gervilla b, S.-J. Barnes c, L. Ortega a, R. Lunar a

a Facultad de Geología, Universidad Complutense de Madrid, Madrid, Spain
b Facultad de Ciencias, Universidad de Granada-CSIC, Granada, Spain
c Sciences de la Terre, Université du Québec à Chicoutimi, Saguenay, Québec, Canada

ABSTRACT

The concentrations of platinum-group elements (PGE) and chalcophile elements Ni, Co, Au, Ag, Se, Re, Cd, Bi, Te and As have been determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in base metal sulfide minerals (BMS) from the Aguablanca Ni-Cu deposit, SW Spain. The main aim was to constrain the role played by the BMS as hosts of PGE as this reveals important information regarding the processes controlling the distribution of these elements in the deposit. The BMS (pyrrhotite, pentlandite, chalcopyrite and minor pyrite) occur as semi-massive, disseminated and minor chalcopyrite-veined ores. On the basis of whole rock metal abundances and BMS mineralogy, these ore types have been interpreted to be the result of the fractionation and crystallization of an immiscible sulfide liquid.

Platinum-group and chalcophile element concentrations vary as a function of the BMS and ore types. The partitioning behavior of some of these metals during the fractional crystallization of the sulfide liquid largely governed their distribution in the ore. Rhenium, Os, Ir, Ru, and Rh occur mostly in solid solution in pyrrhotite and pentlandite from the semi-massive ore which has been interpreted to represent monosulfide solid solution (mss) cumulates. The mss crystallization gave rise to minor Cu-rich sulfide liquid in the form of chalcopyrite veinlets with relatively Pd-, Au- and Ag-enriched chalcopyrite, and minor Re-, IPGE- and Rh-depleted pyrrhotite and pentlandite. Platinum-group element contents in the BMS from the disseminated ore, interpreted to represent an original unfractionated sulfide melt, are approximately intermediate to the semi-massive and chalcopyrite-veined ores.

Palladium and Pt occur mostly associated with Bi, Te, and As forming platinum-group minerals (PGM, Pd-Pt bismuthotellurides and Pt arsenides) within individual BMS grains. This preferential location along with the textures adopted (usually rounded grains and laths) and the temperatures of crystallization (inferred below 500 °C) suggests that Pd and Pt, initially dissolved in the BMS, were exsolved along with Bi, Te and As to form the PGM assemblage present in the ore. Some Pd (approximately 30% of the bulk) remains in solid solution in pentlandite for the three ore types. The presence of Pd in pentlandite is likely a combined effect of limited sulfide fractionation with some of Pd remaining in mss and Pd diffusion into pentlandite from the mss and Cu-rich portions on cooling.

Two textural types of pyrite hosting distinct PGE concentrations have been described: (1) large idiomorphic pyrite and (2) ribbon-like pyrite. Idiomorphic pyrite is the unique BMS hosting Pt (with contents as high as 15 ppm) and also contains relatively high Rh concentrations (4–31 ppm). By contrast, ribbon-like pyrite has no Pt and hosts similar Os, Ir, Ru and Rh concentrations (30–360 ppb) to those of the host pyrrhotite to that it replaces. The origin of the idiomorphic grains, whether exsolution products from mss or alteration products of pyrrhotite, is not well known and further work will be necessary to constrain this point. Nevertheless, the presence of PGE hosted by pyrite reveals that this sulfide should not be overlooked as a potential carrier of PGE in Ni-Cu-(PGE) ore deposits.

1. Introduction

The Aguablanca deposit (SW Spain) is a Ni-Cu-platinum-group element (PGE) ore deposit which contains 15.7 million tons (Mt), grading 0.66 wt.% Ni, 0.46 wt.% Cu and 0.47 g/t PGE (Tomos et al., 2001; Ortega et al., 2004; Lunar et al., 2008; Piña et al., 2006, 2008, 2010). The sulfide mineralization occurs in the form of three ore
Aguablanca ore has been summarized by Ortega et al. (2004) and Pifia mafic silicate melt, after reaching sulfide saturation by assimilation of whole-rock concentrations. This is especially evident for the Ir-group element probably represents in-situ crystallization of an original sulfide melt.

Most of what is known on the distribution of the PGE in the Aguablanca ore has been summarized by Ortega et al. (2004) and Piña et al. (2008). Based on the whole-rock PGE abundances and PGE mineralogy, these studies concluded that PGE distribution is mainly governed by base metal sulfides (BMS) such as pyrrhotite, pentlandite and chalcopyrite. The PGE were originally collected by the immiscible sulfide melt due to their high partition coefficients between sulfide and silicate liquid (10^3–10^5, Peach et al., 1990; Fleet et al., 1991; Crocket et al., 1992) and were later partitioned between the three ore types during sulfide fractionation. However, little is known about the precise location of these elements and the processes that have controlled their distribution in the deposit. The ore contains a platinum-group mineral (PGM) assemblage consisting of mostly Pd-Pt-Bi-Te bearing phases and sperrylite PtAs₂, however these minerals do not seem to be abundant enough to account for the observed whole-rock concentrations. This is especially evident for the Ir-group elements (IPGE, Os, Ir and Ru) and Rh, because very few PGM comprising these elements have been identified, and therefore their distribution must be controlled by other phases rather than PGM. In absence of PGM, BMS can be an important host of PGE (e.g., Noril'sk, Russia, Barnes et al., 2008), but in Aguablanca this possibility has not yet been assessed due to the lack of data on the PGE contents of the BMS.

To investigate the precise distribution of the PGE in the mineralization and the role played by the BMS as carriers of PGE, we have determined the concentrations of PGE and chalcophile elements, such as Ni, Co, Re, Au, Ag, Se, Cd, Te, Bi, and As, in the BMS employing laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique has been successfully used to determine the PGE content in BMS of PGE-rich reefs (e.g., J-M Reef in the Stillwater Complex, Godel and Barnes, 2008; Merensky Reef and Platreef in the Bushveld Complex, Ballhaus and Sylvester, 2000; Godel et al., 2007, Holwell and McDonald, 2007, Hutchinson and McDonald, 2008), in PGE-rich Ni-Cu ores (e.g., Noril'sk, Cabri et al., 2003; Barnes et al., 2006) and in PGE-poor Ni-Cu ores (e.g., Copper Cliff and Creighton Mines in Sudbury, Huminicki et al., 2005 and Dare et al., 2010a, respectively). This work expands the detailed mineralogical and geochemical study of the Aguablanca deposit (Ortega et al., 2004; Piña et al., 2006, 2008) and it is the first attempt to establish which minerals host the PGE in the deposit. Furthermore, we discuss what processes were important in controlling the distribution of the PGE and chalcophile elements in the Aguablanca ore.

2. The Aguablanca Ni-Cu-(PGE) sulfide deposit

2.1. Geological background

The Ni-Cu ore occurs within the Aguablanca stock (Fig. 1). This is a small mafic intrusion (341 ± 1 Ma, U-Pb on magmatic zircons, Romeo et al., 2006) located in the northern part of the Santa Olalla Igneous Complex (SOIC). This complex consists of a calc-alkaline plutonic group situated in the southern limb of the Olivenza-Monesterio antiform, a major WNW-ESE trending Variscan structure occupying a central position within the Ossa-Morena zone (OMZ) of the Iberian Massif (Fig. 1). A detailed geological review of the Iberian Massif is given by Quesada (1991) and references therein. The SOIC intrudes Early Cambrian volcanic, volcanoclastic and carbonate rocks (Bodonal Cala

Fig. 1. (a) Location of the Ossa-Morena zone (OMZ) in the Iberian Massif. (b) Situation of the Santa Olalla Igneous Complex (SOIC) in the southern limb of the WNW-ESE trending Olivenza-Monesterio anticline. (c) Simplified geologic map of the Aguablanca stock showing the location of the Ni-Cu-(PGE) ore. The Cherneca and Aguablanca ductile shear zones are also shown. Modified from Piña et al. (2010).
eated sulfides, which host variable amounts of randomly distributed magmatic breccia (250-300 m wide N-S, up to 600 m long E-W and events of tensional fractures related to the Cherneca ductile shear zone. 2.2. whole rod< ratios), these authors suggested the segregation of a sulfide
mentofthe Ni-Cu sulfide-bearing rocks by the upward brecciation of the
ment in the crust, assimilation of crustal 5, and segregation and
sequence due to multiple melt injections controlled by successive opening
gravitational settling of immiscible sulfide melt, and (2) final emplace­
similar to most plutonic Ni-Cu sulfide ores including magma emplace­
emplaced across a hundred-meter-scale, open tensional fracture
complex) that overlie Late Neoproterozoic metasedimentary rocks (Serie Negra Formation), mainly composed of graywackes and pyrite-rich black slates (Carvalhosa, 1965; Vegas, 1968). Radiometric ages and structural data suggest that the SOIC was emplaced during the transpressive Variscan orogeny in Early Carboniferous times (Tornos et al., 2001; Romeo et al., 2006, 2008). Based on structural and gravity analyses, Romeo et al. (2008) proposed that the Aguablanca stock was emplaced across a hundred-meter-scale, open tensional fracture developed under the sinistral strike-slip ductile strain regime in the area between the Cherneca and Aguablanca shear zones (Fig. 1).

The northern part of the Aguablanca stock hosts the Ni–Cu sulfide mineralization. In this part, rocks comprise mostly medium- to coarse-grained cumulate-textured hornblende-bearing gabbro and gabbr (Piña et al., 2006). Orthopyroxene, clinopyroxene and plagioclase are cumulus phases, whereas the interstitial material is green-brown amphibole, phlogopite and minor quartz. Locally, rocks are pyroxenites and olivine-bearing gabbrohnorites. Magmatic foliations defined by tabular plagioclase crystals are commonly concentric with respect to the intrusion boundaries. The Aguablanca stock underwent a locally very intense, pervasive retrograde alteration. Cumulate textures are partially obliterated by a secondary mineral assemblage formed by hydrothermal alteration and/or low-grade greenschist metamorphism. Clinopyroxene is variably altered to actinolite and chlorite, being locally completely replaced. Orthopyroxene is generally less altered but is also partially replaced by bastite, actinolite and talc. Plagioclase is irregularly altered to sericite, epidote–zoisite group minerals, chlorite and carbonates.

The Ni–Cu ore occurs as a subvertical (dipping 70–80° N), funnel-like magmatic breccia (250–300 m wide N–S, up to 600 m long E–W and 600 m deep) composed of rocks containing semi-massive and disseminated sulfides, which host variable amounts of randomly distributed unmineralized, mafic–ultramafic fragments. The mineralized breccia exhibits a concentric structure made up of an inner core of semi-massive sulfide-bearing rocks surrounded by disseminated sulfide-bearing gabbrohnorite and minor gabbro and norite (hereafter semi-massive and disseminated ores, respectively). The disseminated ore grades outwards to sulfide-free rocks with gradational contacts. Small (<10 cm wide) chalcopyrite veinlets cross-cut the semi-massive and disseminated ores as well as fragments of the breccia. Fragments consist of different fine-to medium-grained, cumulate-textured rocktypes (peridotite, pyroxenite, gabbro and anorthosite). These fragments have been interpreted to represent different stages of igneous cumulate formation, likely in an unexposed mafic–ultramafic (layered?) sequence situated beneath the Aguablanca stock (Piña et al., 2006). From mineralogical and geochemical data (i.e., Ni-depleted olivines and Cu/Zn whole rock ratios), these authors suggested the segregation of a sulfide liquid during the first stages of the differentiation of the cumulate sequence. Sulfur saturation was likely reached by local assimilation of crustal S from pyrite-rich black slates of the Neoproterozoic Serie Negra Formation, as indicated by the sulfur isotope compositions for pyrrhotite, pentlandite, and chalcopyrite (δ34S = +7.4‰, Casquet et al., 2001). Based on the existing information, two distinct stages are established for the origin and emplacement of the deposit (Piña et al., 2010): (1) a scenario similar to most plutonic Ni–Cu sulfide ores including magma emplacement in the crust, assimilation of crustal S, and segregation and gravitational settling of immiscible sulfide melt, and (2) final emplacement of the Ni–Cu sulfide-bearing rocks by the upward brecciation of the sequence due to multiple melt injections controlled by successive opening events of tensional fractures related to the Cherneca ductile shear zone.

2.2. Ore mineralogy and textures

The ore mineralogy and textures, including PGE mineralogy, have been the focus of previous papers (Ortega et al., 2004; Piña et al., 2008) and only a brief review is presented here.

The semi-massive ore samples show a ground mass of Fe–Ni–Cu sulfides (from 20 to 70 vol%) with early-crystallized idiomorphic silicates (mostly pyroxene, plagioclase and/or olivine). Pyrrhotite is the predominant BMS (34–77 modal %). It occurs commonly associated with pentlandite (11–34 modal %), which forms aggregates around or flakes within pyrrhotite. Chalcopyrite (<11 modal %) forms anhedral grains of variable size, and magnetite and ilmenite (up to 2 modal %) are present as isolated crystals generally within pyrrhotite. Pentlandite/chalcopyrite ratios are commonly above 4. In the disseminated ore, BMS (<20 vol%) occur as polymetallic aggregates, randomly and interstitially distributed between silicate grains. These rocks mostly consist of medium-grained hornblende-bearing gabbronorite with minor gabbro, norite and pyroxenite. In comparison to the semi-massive ore, the disseminated ore has higher amounts of chalcopyrite (12–58 modal %) and lower pentlandite (3–18 modal %) with pentlandite/chalcopyrite ratios commonly below 1. Pyrrhotite is the most abundant sulfide (21–68 modal %). The chalcopyrite veinlets are mostly made up of massive chalcopyrite with minor amounts of anhedral pyrrhotite and pentlandite. Locally, chalcopyrite includes subhedral grains of an Ag–Fe–Ni sulfide (probably, argentopentlandite).

Pyrite can be locally abundant, up to 10 modal % of the total sulfides. It mostly occurs as large euhedral crystals and as ribbon-like aggregates outlining the curved lamellae of monoclinc pyrrhotite in the semi-massive ore. From textural features and cross-cutting relationships, Ortega et al. (2004) suggested that the euhedral pyrite formed early in the postmagmatic history of the deposit (prior to and/or coevaly with the exsolution of the coarse-grained pentlandite) and predates the precipitation of the ribbon-like aggregates. However, the origin of these pyrites, whether primary/magmatic or hydrothermal, is not well established yet.

The PGM assemblage consists, in a decreasing order of abundance, of merenskyite (PdTe2), palladian melonite (NiTe2), mchinerite (PdBiTe), moncheite (PtTe2) and sperrylite (PtAs2) (Ortega et al., 2004; Piña et al., 2008; Suárez et al., 2010). Other minor phases comprise Os–Ir–As–S, Ir–As–S and Ir–Pt–As. The predominance of Bi–Te-bearing PGMs over As-bearing PGMs occurs invariably in the three ore types. Platinum-group minerals are significantly more abundant in the semi-massive (70.8% of a total of 301 identified grains) and chalcopyrite veined (21.2%) ores than in the disseminated ore (8%). The PGM are spatially associated with BMS. They occur included in sulfides (76%), along sulfide–silicate (11%) and sulfide–sulfide (6%) boundaries, and only few of them are included in silicates (7%). Based on textural relationships and composition of these phases (Bi-rich merenskyite and mchinerite form at temperatures ~600 °C Hoffman and MacLean, 1976), Piña et al. (2008) concluded that Pd and Pt, initially dissolved in the BMS, exsolved at low temperatures to form the Pd–Pt bismuthotellurides and Pt-arsenides.

3. Analytical method

We studied 5 representative samples from semi-massive ore, 3 from disseminated ore and 1 chalcopyrite veinlet. Firstly, pyrrhotite, pentlandite, chalcopyrite, and pyrite were analyzed for major elements (S, Fe, Ni and Cu) at the Electron Microscope Centre of the University Complutense of Madrid, using a JEOL JXA-8900 M electron microprobe (Table 1). The accelerating voltage was 20 kV, the beam current 50 nA, the beam diameter 1–5 μm and the counting period ranged from 20 to 60 s. Galena (PbS) for S and pure metals for Ni, Fe and Cu were used as standards.

The BMS were later examined on polished sections by optical microscope and sites for laser ablation analyses were selected. Sulfides were then analyzed using laser ablation inductively-coupled plasma mass spectrometry (IA-ICP-MS) at Université du Québec a Chicoutimi (UQAC), Canada. The following isotopes were monitored 29Si, 33S, 34S, 41Ca, 47Ti, 54Fe, 53Mn, 57Fe, 58Fe, 59Co, 60Ni, 61Ni, 63Cu, 65Cu, 66Zn, 68Zn, 73As, 77Se, 82Se, 95Mo, 98Ru, 100Ru, 101Ru, 102Ru, 103Rh,
Table 1

Average of the Fe, Ni, Cu and S concentrations in the BMS as a function of the ore type.

<table>
<thead>
<tr>
<th>Ore-type</th>
<th>BMS mineral</th>
<th>n</th>
<th>% Ni</th>
<th>% Cu</th>
<th>% Fe</th>
<th>Total wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-massive</td>
<td>Pyrrhotite</td>
<td>49</td>
<td>40.75</td>
<td>0.62</td>
<td><0.1</td>
<td>57.43</td>
</tr>
<tr>
<td></td>
<td>Pentlandite</td>
<td>52</td>
<td>34.22</td>
<td>35.65</td>
<td><0.1</td>
<td>28.75</td>
</tr>
<tr>
<td></td>
<td>Pentlandite - flames</td>
<td>10</td>
<td>34.29</td>
<td>36.10</td>
<td><0.1</td>
<td>29.50</td>
</tr>
<tr>
<td></td>
<td>Chalcopryrite</td>
<td>16</td>
<td>35.87</td>
<td><0.1</td>
<td>34.30</td>
<td>29.27</td>
</tr>
<tr>
<td></td>
<td>Pyrite</td>
<td>16</td>
<td>52.27</td>
<td>1.50</td>
<td><0.1</td>
<td>45.01</td>
</tr>
<tr>
<td>Disseminated</td>
<td>Pyrrhotite</td>
<td>45</td>
<td>40.46</td>
<td>0.65</td>
<td><0.1</td>
<td>56.84</td>
</tr>
<tr>
<td></td>
<td>Pentlandite</td>
<td>24</td>
<td>34.16</td>
<td>35.39</td>
<td><0.1</td>
<td>29.11</td>
</tr>
<tr>
<td></td>
<td>Chalcopryrite</td>
<td>23</td>
<td>35.79</td>
<td><0.1</td>
<td>34.07</td>
<td>28.66</td>
</tr>
<tr>
<td></td>
<td>Pyrite</td>
<td>5</td>
<td>40.77</td>
<td>1.02</td>
<td><0.1</td>
<td>58.84</td>
</tr>
<tr>
<td>Chalcopryrite veinlets</td>
<td>Pyrrhotite</td>
<td>3</td>
<td>33.92</td>
<td>35.49</td>
<td><0.1</td>
<td>27.25</td>
</tr>
<tr>
<td></td>
<td>Pentlandite</td>
<td>11</td>
<td>35.71</td>
<td><0.1</td>
<td>34.31</td>
<td>29.11</td>
</tr>
<tr>
<td></td>
<td>Chalcopryrite</td>
<td>11</td>
<td>35.71</td>
<td><0.1</td>
<td>34.31</td>
<td>29.11</td>
</tr>
</tbody>
</table>

n: number of grains analyzed.

105Pd, 106Pd, 107Ag, 108Pd, 109Ag, 111Cd, 118Sn, 121Sb, 125Te, 126Te, 128Te, 185Re, 187Re, 189Os, 190Os, 191Ir, 193Ir, 194Pt, 195Pt, 197Au, 208Pb, and 209Bi. The purpose of monitoring Si, Ca, Ti and Mn was to ensure that no silicates, carbonates or oxides were included in the analyses. The purpose of monitoring S, As, Sb, Sn, Te and Bi was to screen the spectra for platinum-group minerals. 61Ni, 63Cu, 65Cu, 66Zn, 68Zn and 111Cd were used to correct for interferences on 101Ru, 103Rh, 105Pd, 106Pd and 108Pd. Multiple isotopes of each element were collected to check for unforeseen interferences. The isotopes used to determine the element concentrations were 55Co, 61Ni, 75As, 82Se, 101Ru, 103Rh, 105Pd, 107Ag, 108Pd, 111Cd, 125Te, 185Re, 189Os, 191Ir, 195Pt, 197Au and 209Bi. The UQAC laser ablation ICP-MS consists of a Thermo X7 mass spectrometer with a high-performance interface coupled to a New Wave Research 213 nm Nd:YAG UV laser ablation microprobe. A beam of 80 μm diameter, a laser frequency of 10 Hz and a power of 0.8 mJ/pulse were used. The gas blank was measured for 20 s before switching on the laser for 60 s. An argon–helium gas mix was used as carrier gas. The material was then analyzed using the Thermo X7 ICP-MS operating in time resolved mode using peak jumping and a dwell time of 10 ms/peak per element. Internal standardization was based on 57Fe employing mean Fe values for each BMS determined by the electron microprobe (Table 1). Data reduction was carried out using PlasmaLab software (ThermoElemental) by subtracting gas background from each of the analyzed isotopes. To calibrate for PGE and Au, we used the certified reference material Laflamme Po727, provided by the Memorial University of Newfoundland, which is a synthetic FeS doped with ~40 ppm of each PGE and Au (Table 2a). For Co, As, Se, Ag, Cd and Bi, the certified reference material MASS-1, a ZnCuFeS pressed powder pellet provided by the National Institute for Standards and Technology (NIST) and doped with 50–70 ppm of each element, was used (Table 2a). The calibrations were monitored using two in-house reference materials: Po-62, an FeS doped with ~2 ppm PGE, Au and Re, made by Dr. Paredesego in the McGill University and JB-mss-5 which is a synthetic FeS doped with 50–80 ppm chalcophile elements, provided by Prof. Brenan of the University of Toronto (Table 2b). JB-mss-5 was also used to calibrate for Ni and Re as neither of the certified materials contained these elements. Tellurium was determined using the semi-quantitative option of PlasmaLab software. The semi-quantification mode uses the sensitivity of the isotopes which are quantified to draw a curve of isotopic number versus sensitivity. The isotope for which there is no reference material is then projected onto this line and the sensitivity is estimated from this. The reliability of the result depends on: a) how well the isotopes close to the uncalibrated isotope are determined; and b) the isotope not fractionating from the isotopes used to draw the calibration curve. In our experience in semi-quantitative mode provided the sensitivity for the isotopes close to the element is well known the results are generally within ~40% of the quantitative determinations.
101Ru was corrected for 61Ni interference by using a NiS blank run at the beginning of each analytical session. 103Rh and 105Pd were corrected for 63Cu40Ar and 65Cu40Ar, respectively, by running a (CuFe) S blank at the beginning of each session. In chalcopyrite, the interference of Cu argide on 103Rh was so large that no Rh results can be reported for this mineral. 103Rh was used for pyrrhotite and pentlandite analyses, but in chalcopyrite to avoid the 65Cu40Ar interference. 108Pd was used for pyrrhotite and pentlandite analyses, but in chalcopyrite to avoid the 65Cu40Ar interference by monitoring 113Cd and 68Zn40Ar. Detection limits for laser analyses of the BMS were calculated using background counts for the gas blank and each BMS. The ranges, average and standard deviation of the concentrations of each element as a function of the ore type and BMS are summarized in Table 3. Tables with the individual analyses for each BMS are provided as supplementary electronic information (Tables S1, S2, S3 and S4). In the next section, we first describe the results obtained for pyrrhotite, pentlandite, and chalcopyrite, and later for pyrite since its trace metal abundances are significantly different to those.

4. Laser ablation ICP-MS results

4.1. Pyrrhotite, pentlandite and chalcopyrite

Platinum-group element concentrations vary as a function of the BMS and the ore type. Pentlandite is the principal BMS hosting PGE with values ranging from 578 to 7135 ppb. For any given sample, more than 85% of the PGE found in BMS occur in pentlandite. Most pyrrhotite grains have <400 ppb PGE (some grains containing up to 925 ppb), and chalcopyrite hosts the lowest PGE concentrations (most results are below 250 ppb). Overall, BMS from the semi-massive ore have higher PGE contents than those from the disseminated and chalcopyrite-veined ores (Table 3), due mainly to the high concentrations of Os, Ir, Ru, and Rh in pyrrhotite and pentlandite from semi-massive ore samples.

Osmium and Ir contents are positively correlated (Fig. 2a), as has been observed in similar studies at other Ni–Cu–PGE deposits (e.g., Merensky Reef in the Bushveld Complex, Godel et al., 2007; J-M Reef in the Stillwater Complex, Godel and Barnes, 2008). These elements are preferentially concentrated in pyrrhotite (16–189 ppb Os and 43–314 ppb Ir) and pentlandite (24–152 ppb Os and 47–259 ppb Ir) from the semi-massive ore (Fig. 3a and b). Flame-textured pentlandite has Os and Ir values (33–125 ppb Os and 61–244 ppb Ir) covering a similar range to the granular pentlandite (Table 3). In the disseminated ore, Os and Ir contents are lower to 40 and 45 ppb respectively for pyrrhotite, and 36 and 22 ppb respectively for pentlandite. These elements are below the detection limit, ~4–7 ppb, in all of the BMS from the chalcopyrite veinlet. Osmium and Ir in chalcopyrite are also below the detection limit (~7–10 ppb) in all ore types. An exception to this is some minor chalcopyrite from the semi-massive ore containing up to 87 ppb Os and 13 ppb Ir. Rhenium is relatively well correlated with Ir (Fig. 2b) and Os, and presents higher concentrations in pyrrhotite (from ~0.20 to 1.2 ppm, usually ~0.5 ppm), pentlandite (from ~0.10 to 0.44 ppm) and chalcopyrite (up to 0.5 ppm) from the semi-massive ore than in these BMS from the disseminated ore (usually ~0.15 ppm) (Fig. 2b). Rhenium is below the detection limit (~0.005 ppm) in all of the analyses from the chalcopyrite veinlet.

Ruthenium and Rh follow a similar trend to Os and Re, being positively correlated with Ir (Fig. 2c and d). In the same way, Ru and Rh concentrations in pyrrhotite and pentlandite from the semi-massive ore are the highest, ranging from ~18 to 260 ppb for Ru (with no preference for one of the two BMS), and from 28 to 199 ppb Rh in pyrrhotite and from 30 to 150 ppb Rh in pentlandite. These values decrease in the disseminated ore (usually below 40 ppb for Rh and below the detection limit for Ru, ~12–17 ppb) and more drastically in the chalcopyrite veinlet (below the detection limit, ~12–14 ppb).
Laser ablation ICP-MS results for pyrrhotite, pentlandite, chalcopyrite and pyrite from the Aguablanca deposit.

Table 3

<table>
<thead>
<tr>
<th>Ore-type</th>
<th>n</th>
<th>Range</th>
<th>AM</th>
<th>SD</th>
<th>wt.%</th>
<th>wt.%</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disseminated ore</td>
<td></td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>38</td>
<td>0.48-1.27</td>
<td>0.005-0.02</td>
<td>0.15-1.23</td>
<td>16-189</td>
<td>43-316</td>
<td>18-238</td>
<td><10</td>
<td><46</td>
<td><6</td>
<td>0.09-1.83</td>
<td>0.01-0.34</td>
<td>55-80</td>
<td>0.16-3.88</td>
<td>0.4-2.6</td>
<td><5</td>
</tr>
<tr>
<td>Pentlandite</td>
<td>27</td>
<td>32.1-36.8</td>
<td>0.28-1.20</td>
<td>0.10-0.44</td>
<td>24-152</td>
<td>47-259</td>
<td>16-258</td>
<td><10</td>
<td><106</td>
<td>152</td>
<td>0.54</td>
<td>0.11</td>
<td>67</td>
<td>1.62</td>
<td>1.32</td>
<td>0.56</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td>3</td>
<td>32.4-42</td>
<td>0.12-0.70</td>
<td>0.15-0.27</td>
<td>33-125</td>
<td>61-244</td>
<td>67-152</td>
<td><10</td>
<td><64</td>
<td><7</td>
<td>6.3</td>
<td>0.53</td>
<td>0.07</td>
<td>66</td>
<td>1.6</td>
<td>1.03</td>
</tr>
<tr>
<td>Chalcopyrite - flames</td>
<td>4</td>
<td>0.05-0.15</td>
<td>0.58-0.99</td>
<td>0.04-0.19</td>
<td>27-598</td>
<td>58-622</td>
<td>46-719</td>
<td>4206-30570</td>
<td>31-15030</td>
<td><10</td>
<td>45</td>
<td>9</td>
<td>15.0</td>
<td>4.72</td>
<td>60</td>
<td>4.75</td>
</tr>
<tr>
<td>Semi-massive ore</td>
<td></td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>16</td>
<td>0.54-0.82</td>
<td>0.005-0.02</td>
<td>0.01-0.44</td>
<td>5-40</td>
<td>4-55</td>
<td>11-81</td>
<td><9-76</td>
<td><6</td>
<td><41</td>
<td>0.01-1.76</td>
<td>0.02-0.16</td>
<td>87-185</td>
<td>0.45-6.86</td>
<td>0.1-2.5</td>
<td><5</td>
</tr>
<tr>
<td>Pentlandite</td>
<td>13</td>
<td>30.6-36.6</td>
<td>0.80-1.36</td>
<td><0.01-0.14</td>
<td>5-36</td>
<td>4-22</td>
<td>6-71</td>
<td>6-128</td>
<td>538-7087</td>
<td>3-266</td>
<td>0.52-8.88</td>
<td>0.01-1.91</td>
<td>64-165</td>
<td>0.06-7.96</td>
<td>0.7-13.9</td>
<td><5</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td>8</td>
<td>0.01-0.04</td>
<td><0.001</td>
<td>0.01-0.04</td>
<td>105</td>
<td>91</td>
<td>115</td>
<td>122</td>
<td>62-220</td>
<td><10</td>
<td>16</td>
<td>4.5</td>
<td>9</td>
<td>10.3</td>
<td>5.4</td>
<td>57</td>
</tr>
<tr>
<td>Chalcopyrite veinlet</td>
<td></td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>3</td>
<td>0.78-0.99</td>
<td>0.02-0.04</td>
<td>0.005</td>
<td>7</td>
<td>3</td>
<td>15</td>
<td>7</td>
<td>7</td>
<td>5.4</td>
<td>4.22</td>
<td>0.08</td>
<td>23</td>
<td>0.8</td>
<td>1.54</td>
<td>0.5-1.1</td>
</tr>
<tr>
<td>Pentlandite</td>
<td>3</td>
<td>33.8-34.7</td>
<td>1.05-1.16</td>
<td><0.003</td>
<td>6</td>
<td>4</td>
<td>14</td>
<td>12</td>
<td><5</td>
<td>3582-6770</td>
<td>4-84</td>
<td>1.0-1.3</td>
<td>0.2-2.7</td>
<td>43-46</td>
<td>1.1-4.3</td>
<td>0.6-2.7</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td>7</td>
<td>0.01-0.02</td>
<td><0.001</td>
<td>0.01-0.02</td>
<td>7</td>
<td>5</td>
<td><3</td>
<td>7</td>
<td><5</td>
<td>30-191</td>
<td>5.7-34.8</td>
<td>5.8-13.3</td>
<td>50-63</td>
<td>0.88-5.91</td>
<td>0.6-2.0</td>
<td><5</td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>1</td>
<td>0.012</td>
<td>0.007</td>
<td>0.012</td>
<td>45</td>
<td>91</td>
<td>115</td>
<td>122</td>
<td>62-220</td>
<td><10</td>
<td>16</td>
<td>4.5</td>
<td>9</td>
<td>10.3</td>
<td>5.4</td>
<td>57</td>
</tr>
</tbody>
</table>

n: number of grains analyzed; AM: arithmetic mean of n values; SD: standard deviation around arithmetic mean; < below the detection limit; n.d.: arithmetic mean not determined due to large variations in the values.

a Ru and Rh in chalcopyrite not reported due to interferences.

b In chalcopyrite, 108Pd was used instead of 109Pd to avoid 108Ar56Cu interference. 109Pd was corrected for 109Cd.
(Fig. 3a and b). Ruthenium and Rh contents in the pentlandite flames are similar to those of the granular pentlandites (Table 3).

Palladium is the most abundant PGE detected within BMS. It occurs preferentially in pentlandite (466–7087 ppb), representing typically more than 80% of the total PGE found within this phase. Appreciable amounts of Pd in pentlandite have also been reported in other Ni-Cu-PGE sulfide deposits (e.g., Merensky Reef, Bushveld Complex, Godel et al., 2007, J-M Reef, Stillwater Complex, Godel and Barnes, 2008; Platreef, Bushveld Complex, Holwell and McDonald, 2007; and Creighton Mine, Sudbury, Dare et al. 2010a). Unlike Re, IPGE and Rh, Pd is relatively enriched in pentlandite from the disseminated and chalcopyrite-veined ores (from 539 to 7087 ppb, mean 2771, and from 3592 to 6770 ppb, mean 5053, respectively) relative to the semi-massive ore (from 466 to 5218 ppb, mean 2212) (Fig. 3b). More than 95% of PGE found in pentlandite from the disseminated and chalcopyrite-veined ores correspond to Pd. The Pd content in pentlandite also depends on the presence of chalcopyrite. Pentlandite grains in contact with chalcopyrite commonly have more Pd than those with no such contacts (Fig. 4). This is especially evident in intergranular pyrrhotite–pentlandite–chalcopyrite aggregates from the disseminated ore where pentlandite contains higher Pd values than those pentlandite grains located in chalcopyrite-free aggregates. In contrast to IPGE and Rh, whose abundances are similar in co-existing granular and flame-textured pentlandite, Pd is strongly depleted in flames (Table 3), containing ~95% less Pd than granular pentlandite. Palladium in pyrrhotite is invariably below detection limit (~39–46 ppb) in all ore-types. It is significantly more abundant in chalcopyrite from the disseminated ore (from 68 to 407 ppb) than in chalcopyrite from the semi-massive one (up to 82 ppb) (Fig. 3c). In the chalcopyrite veinlet, Pd in chalcopyrite varies between 30 and 191 ppb. Platinum is below the detection limit (~6–10 ppb) in all of the analyzed grains. During the laser ablation, several Pd-Pt-Bi-Te microinclusions were identified, mainly within pyrrhotite and pentlandite, by the presence of narrow and well-developed peaks
for these elements in the ICP-MS signal (Fig. 5a). The composition of these inclusions is consistent with the PGE mineralogy identified previously by Ortega et al. (2004), Piña et al. (2008) and Suárez et al. (2010).

Cobalt in the Aguablanca pentlandite ranges from 0.28 to 1.36 wt.%. Interestingly, Co concentrations in flame-textured pentlandite are lower than in granular pentlandite (Table 3). For the three ore types, Co in pyrrhotite varies from 50 to 200 ppm, and in chalcopyrite is generally <3 ppm. Cobalt shows good positive correlation with Ni (p = 0.88, not shown) and its correlation with Pd is only relatively good in pentlandite from semi-massive ore samples (p = 0.48, not shown).

Selenium is approximately evenly distributed between pyrrhotite, pentlandite and chalcopyrite in each sample, and is slightly more abundant in the disseminated ore (64-185 ppm) than in the semi-massive (36-80 ppm) and chalcopyrite-veined (43-63 ppm) ores. Bismuth preferentially occurs in chalcopyrite with similar concentrations for the three ore types (0.80-9.11 ppm). In pyrrhotite and pentlandite, Bi contents are usually lower (0.16-6.86 ppm and 0.06-14.65 ppm, respectively). The highest Te abundances have been found in pentlandite and chalcopyrite from the disseminated ore (0.7-13.9 ppm in pentlandite and 0.7-5.0 ppm in chalcopyrite). Arsenic concentrations are invariably below the detection limit (-5 ppm).

Chalcopyrite contains the majority of Ag (6-47 ppm) and Cd (3-31 ppm) found in BMS. These elements are positively correlated with each other. Silver contents are higher in chalcopyrite from the disseminated ore (12-47 ppm) than in that from the semi-massive one (8-23 ppm). Pentlandite has lower contents (0.4-9 ppm Ag, and 0.01-2.75 ppm Cd) than chalcopyrite, and most pyrrhotite contains less than 1 ppm Ag and 0.2 ppm Cd.

Gold is preferentially contained in chalcopyrite from the disseminated and chalcopyrite-veined ores (Fig. 3c), with values ranging between 10 and 170 ppm. Chalcopyrite in semi-massive ore samples has Au values close to the detection limit (-4-6 ppb) (Fig. 3c). In pentlandite, Au values are approximately equal for the three ore-types (from below the detection limit to 84 ppb, with the exception of one grain containing up to 266 ppb). Gold concentrations in pyrrhotite are below the detection limit.

4.2. Pyrite

There are notable differences in the concentrations of PGE among the large-grained idiomorphic pyrite and ribbon-like pyrite (Table 3). The idiomorphic pyrite, with most values ranging from 31 to 79 ppb, is the only BMS hosting Pt. One idiomorphic grain contains an unusually high Pt concentration, 15,030 ppb, which does not correspond to any microinclusion and does not correlate with any other element (Fig. 5b). In the idiomorphic pyrites, the concentrations of Rh (4.2-30.6 ppm), Co (0.59-0.99 wt.%) and As (42-208 ppm) are high and Ni is low (0.05-0.15 wt.%). There is no apparent correlation between these elements. In contrast, ribbon-like pyrite has low Pt (below the detection limit, ~10 ppb), Rh (62-220 ppb), Co (0.20-0.58 wt.%) and As (close to the detection limit, ~2 ppm), but high concentrations of Ni (1.19-7.67 wt.%), Au (16-418 ppb), Ag (2-17 ppm), Te (2-17 ppm), Bi (up to 51 ppm) and Re (0.19-0.46 ppm) relative to idiomorphic pyrite. Selenium is usually higher in the ribbon-like pyrite (85-110 ppm) than in idiomorphic pyrite (commonly less than 25 ppm). Osmium, Ir and Ru concentrations are slightly higher in idiomorphic pyrite than in ribbon-like pyrite (Table 3). There are good positive correlations between Os-Ir-Ru-Re, mainly in ribbon-like pyrite. Similarly, the concentrations of IPGE and Rh in ribbon-like pyrite grains are positively correlated with the concentrations of these elements in the host pyrrhotite (Fig. 6).

4.3. Mass balance calculations

In order to determine whether BMS are the principal carriers of PGE, we have calculated the percentage of each element present in solid solution in each BMS following the method described by Barnes et al. (2008). This calculation requires the contents of the elements in
Table 4
Summary of whole rock concentrations (from Piña et al., 2008) of the samples used for IA-ICP-MS. Weight fractions of BMS are also indicated.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ni</th>
<th>Cu</th>
<th>Co</th>
<th>Os</th>
<th>Ir</th>
<th>Ru</th>
<th>Rh</th>
<th>Pt</th>
<th>Au</th>
<th>Ag</th>
<th>Se</th>
<th>Bi</th>
<th>Te</th>
<th>Weight fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wt.%</td>
<td>ppm</td>
<td>ppb</td>
<td>ppm</td>
</tr>
<tr>
<td>Semi-massive ore</td>
<td></td>
</tr>
<tr>
<td>Leo</td>
<td>10.2</td>
<td>0.62</td>
<td>1861</td>
<td>34</td>
<td>31</td>
<td>30</td>
<td>113</td>
<td>187</td>
<td>20</td>
<td>1.7</td>
<td>64</td>
<td>2.5</td>
<td>3.7</td>
<td>5.0</td>
</tr>
<tr>
<td>6715-416</td>
<td>26.24</td>
<td>6.41</td>
<td>1101</td>
<td>25</td>
<td>61</td>
<td>53</td>
<td>30</td>
<td>193</td>
<td>20</td>
<td>2.1</td>
<td>57</td>
<td>11.17</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>6588-281</td>
<td>30.34</td>
<td>5.19</td>
<td>183</td>
<td>75</td>
<td>219</td>
<td>121</td>
<td>263</td>
<td>467</td>
<td>676</td>
<td>2.1</td>
<td>65</td>
<td>3.77</td>
<td>1.1</td>
<td>6.6</td>
</tr>
<tr>
<td>6629-38</td>
<td>15.24</td>
<td>3.44</td>
<td>273</td>
<td>13</td>
<td>35</td>
<td>25</td>
<td>41</td>
<td>224</td>
<td>467</td>
<td>39</td>
<td>2.5</td>
<td>36</td>
<td>4.57</td>
<td>2.5</td>
</tr>
<tr>
<td>6715-415</td>
<td>26.28</td>
<td>6.30</td>
<td>1225</td>
<td>21</td>
<td>57</td>
<td>26</td>
<td>98</td>
<td>84</td>
<td>907</td>
<td>45</td>
<td>2.6</td>
<td>64</td>
<td>10.64</td>
<td>2.4</td>
</tr>
<tr>
<td>Disseminated ore</td>
<td></td>
</tr>
<tr>
<td>6748-580</td>
<td>3.17</td>
<td>0.41</td>
<td>148</td>
<td>138</td>
<td><2</td>
<td>6</td>
<td>4</td>
<td>346</td>
<td>216</td>
<td>264</td>
<td>6.4</td>
<td>12</td>
<td>5.49</td>
<td>1.8</td>
</tr>
<tr>
<td>AGU-5-247</td>
<td>3.76</td>
<td>0.80</td>
<td>85</td>
<td>212</td>
<td><2</td>
<td>2</td>
<td>8</td>
<td>456</td>
<td>371</td>
<td>341</td>
<td>3.6</td>
<td>14</td>
<td>5.89</td>
<td>1.9</td>
</tr>
<tr>
<td>6758-548.25</td>
<td>3.56</td>
<td>0.43</td>
<td>113</td>
<td>181</td>
<td><2</td>
<td>4</td>
<td>4</td>
<td>276</td>
<td>128</td>
<td>167</td>
<td>3.1</td>
<td>16</td>
<td>4.18</td>
<td>3.6</td>
</tr>
<tr>
<td>Chalcopyrite veinlet</td>
<td>6479-456</td>
<td>7.07</td>
<td>0.97</td>
<td>476</td>
<td>284</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>737</td>
<td>618</td>
<td>833</td>
<td>9.9</td>
<td>19</td>
</tr>
</tbody>
</table>

<2: below the detection limit (2 ppb); n.p.: not present.

whole rock (taken from Table 1 in Piña et al., 2008 and summarized in Table 4), the weight fraction of each BMS in the sample (Table 4) estimated as explained below using the bulk Ni, Cu and S concentrations and the mean content of Ni, Cu and S in each BMS; and the results of the in situ element analyses of the BMS (Table 3). For the weight fraction calculation, we have considered that all Cu in the whole rock is hosted by chalcopyrite, and Ni is hosted by pentlandite after extracting the concentration of Ni in olivine and pyroxene (~1000 ppm, average value, Piña et al., 2006). So, the weight fraction of chalcopyrite (FeCp) is given by Co/Cu/Cp, where Co and CuCp represent the content of Cu in whole rock and chalcopyrite, respectively. The weight fraction of pentlandite (FePn) is given by

| Table 5
Proportion (%) of each element hosted in pyrrhotite, pentlandite, chalcopyrite and sum BMS from the Aguafranca deposit.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ni</th>
<th>Co</th>
<th>Os</th>
<th>Ir</th>
<th>Ru</th>
<th>Rh</th>
<th>Pt</th>
<th>Au</th>
<th>Ag</th>
<th>Se</th>
<th>Bi</th>
<th>Te</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Semi-massive ore</td>
<td></td>
</tr>
<tr>
<td>Leo</td>
<td>3.8</td>
<td>4.0</td>
<td>65.0</td>
<td>45.2</td>
<td>40.1</td>
<td>15.0</td>
<td>0.2</td>
<td>0.8</td>
<td>7.7</td>
<td>11.6</td>
<td>34.7</td>
<td>5.8</td>
</tr>
<tr>
<td>6715-416</td>
<td>55.1</td>
<td>28.4</td>
<td>18.9</td>
<td>30.0</td>
<td>6.6</td>
<td>0.1</td>
<td>15.3</td>
<td>263</td>
<td>1.4</td>
<td>25.2</td>
<td>14.8</td>
<td>7.9</td>
</tr>
<tr>
<td>6588-281</td>
<td>0.01</td>
<td>1.5</td>
<td>0.1</td>
<td>0.02</td>
<td>0.04</td>
<td>0.1</td>
<td>18.5</td>
<td>1.9</td>
<td>1.0</td>
<td>10.5</td>
<td>15.1</td>
<td>15.0</td>
</tr>
<tr>
<td>Chalcopyrite veinlet</td>
<td>6479-456</td>
<td>7.07</td>
<td>0.97</td>
<td>476</td>
<td>284</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>737</td>
<td>618</td>
<td>833</td>
</tr>
</tbody>
</table>

Values in italics were obtained from laser results below the detection limit, hence they represent a maximum proportion.
calculations due to a number of reasons. Firstly, the relative modal fraction of pyrrhotite has been obtained after determining optically variable even within individual samples. Furthermore, the PGE sulfur content in pyrite. Pyrite was not included in the mass balance proportion between idiomorphic pyrite and ribbon-like pyrite is used for the calculation of the weight fraction of pyrite (FPy) expressed abundance ranges widely in a same textural type of pyrite, mostly in idiomorphic pyrites (Table 3). Finally, the number of analyses is not pyrrhotite, respectively. This calculation for the weight fraction of pyrrhotite (Fpo) was determined assuming that the remaining S, after subtracting the S required by pentlandite and chalcopyrite, corre­pyrite in the rock, respectively. Selenium is mostly within BMS (51-65% semi-massive ore; 80-96% in disseminated ore; and 57% in the chalcopyrite veinlet).

5. Discussion

On the basis of the BMS mineralogy and whole rock metal abundances, the different ore types of the Aguablanca Ni–Cu deposit have been interpreted to be the result of the fractionation and crystallization of an immiscible sulfide liquid (Ortega et al., 2004; Piña et al., 2008, 2010). The predominance of pyrrhotite in the semi-massive ore linked with the high pentlandite/chalcopyrite modal ratios (commonly above 4), low (Pd+Pt)/(IPGE + Rh) ratios (commonly between 1.7 and 10) and relatively high IPGE and Rh contents (Table 4) suggests that this ore represents a Fe-rich monosulfide solid solution (mss) cumulate. In contrast, the fractionated metal contents of the chalcopyrite veinlets with low IPGE and Rh abundances, and high Pd, Cu, and Au concentrations suggest that these likely formed from a Cu-rich sulfide liquid. BMS from the disseminated ore could represent either the crystallization of an original, unfractonated sulfide liquid or a fractionated sulfide liquid after mss crystallization (Piña et al., 2008). This interpretation is based on the relative abundance of Pt, Pd, and Au in comparison with the semi-massive ore, the low pentlandite/chalcopyrite modal ratios (0.06–0.31) and the high (Pd+Pt)/(IPGE + Rh) ratios (commonly higher than 34). We suggest that the hypothesis referring to a fractionated sulfide liquid is unlikely because the liquidus temperature of the silicate magma is significantly higher than that of a fractionated sulfide liquid, and thus
it would be difficult for a fractionated sulfide liquid to disperse and form disseminated ore in partially solidified igneous rocks. Hence, the disseminated sulfides may represent an original sulfide liquid that crystallized in situ and was retained as droplets in the host gabbro-norite. Furthermore, in many cases these droplets show separated Ni-rich and Cu-rich fractions (see Fig. 8B in Ortega et al., 2004), exemplifying that sulfide melt was retained and later underwent fractionation processes on a small scale.

Experimental work has demonstrated that PGE and chalcophile elements fractionate during the crystallization of mss from the sulfide melt (Fleet et al., 1993; Li et al., 1996; Barnes et al., 1997, 2001; Mungall et al., 2005). Whereas Re, Os, Ir, Ru, Co, and Rh partition into the crystallizing mss, Pt, Pd, Cu, Au, Ag, Cd, and semi-metals (Bi, Te, Sb, and As) behave incompatibly and concentrate in the Cu-rich residual liquid. If fractionation of the sulfide liquid occurred at Aguablanca, then this mechanism could be the key to understanding the distribution of metals in the deposit. Fractionation would lead to concentration of Re, Os, Ir, Ru, and Co in the exsolution products of mss (pyrrhotite and pentlandite), whereas Pt, Pd, Au, Ag, and Cd would be concentrated in the crystallization products of the Cu-rich liquid, mainly chalcopyrite. However, other processes, such as crystallization of PGM and circulation of late magmatic and/or hydrothermal fluids, could modify the distribution of PGE in the ore. In the following sections, we will discuss the role played by these processes on the distribution of PGE in the Aguablanca Ni-Cu deposit.

5.1. Fractionation of the sulfide liquid

The LA-ICP-MS data obtained in this work indicate that the distribution of PGE in Aguablanca is largely controlled by their partitioning behavior during the fractionation of the parent sulfide liquid. Rhenium, Os, Ir, Ru, and minor Rh are accommodated in pyrrhotite and pentlandite from the semi-massive ore (i.e., mss cumulate) (Fig. 3a–b). Pentlandite typically exsolves from mss on cooling (Kelly and Vaughan, 1983), but Pereguevdova and Ohnenstetter (2002) have shown that pentlandite can also originate via exsolution from heazlewoodite-iss. If this were the case, then the pentlandite should have lower Os, Ir, Ru and Rh contents than pyrrhotite, because iss does not concentrate any of these elements. However, in the semi-massive ore samples, Os, Ir, Ru and Rh are approximately equally distributed among coexisting pyrrhotite and pentlandite (Fig. 8), suggesting that this pentlandite exsolved from mss. In contrast, the pentlandite present in the chalcopyrite veinlet (i.e., Cu-rich sulfide liquid) contains very little IPGE and Rh (Table 3), so it could have exsolved from iss on cooling, or at least, from a fractionated sulfide liquid that was depleted in Re, IPGE and Rh by earlier crystallization of mss. Fig. 8 also shows that Os, Ir, and Rh are slightly preferentially concentrated in pyrrhotite, likely reflecting a preference of these elements for pyrrhotite against pentlandite during exsolution processes (e.g., Ballhaus and Sylvester, 2000; Holwell and McDonald, 2007). The apparent strong affinity of Rh for mss in Aguablanca points to relatively high S to metal ratios of the sulfide melt, because under these S-saturated or S-oversaturated conditions, Rh behaves as a compatible element during mss crystallization (Li et al., 1996; Mungall et al., 2005). Mass balance calculations indicate that pyrrhotite and pentlandite account for the majority of Os–Ir–Ru–Rh in the semi-massive ore samples (Table 5), in agreement with the almost total absence of IPGE-Rh-bearing discrete PGM in such ore. Mass balance calculations for Re have not been possible due to the lack of whole rock data. Nevertheless, Re is commonly hosted in BMS (Barnes et al., 2008) and since no Re-bearing phase has been found, most Re is inferred to be dominantly hosted within BMS. These observations imply that pyrrhotite and pentlandite retained most of the Os, Ir, Ru, and Rh budget of the mss. The interpretation that the pyrrhotite and pentlandite, enriched in IPGE and Rh, have been exsolved from mss and preserve its original concentrations has also been proposed for the Platreef of the Bushveld Complex (Holwell and McDonald, 2007) and for the massive ore of the Noril’sk deposit (Barnes et al., 2008).

Palladium has a different distribution to the IPGE and Rh in the Aguablanca ore. Mass balance calculations indicate that most Pd occurs as PGM, but a significant proportion (from 15 to 29%) also is in solid solution within pentlandite. A number of studies have shown that pentlandite is a fairly common Pd carrier in Ni-Cu–PGE deposits (i.e., Medvezky Creek Mine, Noril’sk, and Merensky Reef, Bushveld Complex, Barnes et al., 2008; J-M Reef, Stillwater Complex, Godel and Barnes, 2008; Platreef, Bushveld Complex, Holwell and McDonald, 2007 and Hutchinson and McDonald, 2008; Creighton deposit, Sudbury, Dare et al., 2010a). Pentlandite commonly exsolves from mss on cooling (Naldrett, 1969; Craig, 1973) and as Pd is relatively incompatible with mss (D_Pd/SS0.005-0.44, Fleet et al., 1993; Li et al., 1996; Mungall et al., 2005), one might expect that palladinite

![Fig. 8. Variation diagrams of the average content in Os (a), Ir (b), Ru (c), and Rh (d) among pyrrhotite and pentlandite that coexist in a same sample. When individual analyses were below the detection limit, these values were employed for the calculation of the mean value. Lines 1:1 indicate equal distribution of the PGE among pyrrhotite and pentlandite.](image-url)
exsolved from mss contains very little Pd. However, some studies have suggested that some Pd does can enter mss and later concentrate in pentlandite during its exsolution in the same manner as the Co and Ni that were originally dissolved in mss eventually partitioned into pentlandite (Helmy et al., 2007; Holwell and McDonald, 2007; Dare et al., 2010a,b; Barnes and Dare, 2010). We suspect that in Aguablanca some Pd may also enter in mss as suggested by the common occurrence of Pd-bearing PGMs (interpreted as exsolution products) within pyrrhotite from semi-massive ore samples.

Barnes et al. (2006) and Dare et al. (2010a) have attributed the high Pd concentrations in pentlandite from Noril'sk and Sudbury Ni–Cu deposits, respectively, to Pd diffusion into pentlandite from iss and mss during cooling. The evidence observed by these authors leading to this interpretation has been also found at Aguablanca, namely, the Pd that enters into solid solution in pentlandite is influenced by the timing of pentlandite exsolution and by textural relationships with chalcopyrite (i.e., whether pentlandite is or is not in contact with chalcopyrite). Experimental studies have shown that, at high temperatures, mss can dissolve appreciable amounts of Pd (up to 11 wt.% at 900°C), but with decreasing temperature, the solubility of Pd decreases drastically (0.4 wt.% at 500°C) and as a result Pd enters into the pentlandite structure (Makovicky et al., 1986). Similarly, Peregoedova (1998) experimentally demonstrated that Pd (and Pt and Au) is incompatible in iss at ~840°C. Besides, Kelly and Vaughan (1983) demonstrated that pentlandite first exsolves from mss at ~600°C as granular pentlandite, and later at ~300°C it starts to exsolve as flames within pyrrhotite. According to Dare et al. (2010a)’s diffusion model, the Pd content initially dissolved in mss/pyrrhotite and iss would start to be rejected to granular pentlandite at high temperatures (~650°C). As a consequence, pyrrhotite and iss would become depleted in Pd and later, at low temperatures (~300°C), Pd would not be available to diffuse into flame-textured pentlandite. At Aguablanca, the laser ablation results are in agreement with this diffusion model. Firstly, the flames of pentlandite are much poorer in Pd (and Co) than co-existing granular pentlandites (Table 3), indicating that pyrrhotite rejected almost the total Pd of iss when the flames started to exsolve. In addition, pentlandite grains in contact with chalcopyrite typically have higher Pd values than those grains with no contact with chalcopyrite (Fig. 4), suggesting that chalcopyrite provided an extra source of Pd.

The laser ablation data is insufficient to test the two possibilities considered for the origin of the disseminated ore: (1) that it represents the crystallization of a original sulfide melt, (2) that it represents a fractionated sulfide liquid. The low Re, IPGE and Rh contents of the pyrrhotite and pentlandite in comparison with the values observed in the semi-massive ore samples can be indicative of both origins. Similarly, the pentlandite from the disseminated ore is slightly enriched in incompatible elements such as Pd and Au relative to the pentlandite from the semi-massive ore (Fig. 3b), but this observation is not necessarily indicative of a fractionated sulfide liquid because, as it has been shown above, sulfides without any fractionation can also show this enrichment (Pd diffusion from mss and Cu-rich portion). Fig. 9 can shed some light on the origin of the disseminated ore. This figure shows a pattern of the metals in pyrrhotite, pentlandite, and chalcopyrite from the semi-massive ore normalized to the average of the whole rock composition of the disseminated ore. Osmium to Rh are enriched in pyrrhotite and pentlandite by a factor of 3 to 15 relative to the disseminated ore, and Pt and Au are depleted by factors of 0.1 and 0.01. These values are within the range for the partition coefficients into mss (Barnes and Lightfoot, 2005 and references therein), so these data are consistent with the hypothesis of the disseminated ore representing an original sulfide liquid from which mss crystallized.

At Aguablanca, fractionation of mss resulted in only a minor amount of Cu-rich residual liquid, which concentrated incompatible elements such as Cu, Pd, Pt, Au, Ag, and Cd. Laser ablation data support the interpretation that chalcopyrite veinlets represent crystallization products of this Cu-rich liquid. Chalcopyrite in the chalcopyrite veinlet is slightly enriched in Cd and Au in comparison with chalcopyrite from semi-massive ore samples, and in addition, pyrrhotite and pentlandite have extremely low IPGE and Rh values (below the detection limit), and pentlandite hosts relatively high Pd and Au contents.

5.2. Crystallization of platinum-group minerals

Mass balance calculations indicate that a large proportion of Pd (~70%, the remainder held in pentlandite) and almost all Pt and Au are not present in any BMS (except for pyrite as discussed below). These elements must therefore occur as discrete PGM, and in fact, Pd and Pt have been found as bismuthotellurides (merenskyite, palladian mellophane, michenerite and moncheite) and arsenides (sperrylite) in the ore (Ortega et al., 2004; Piña et al., 2008; Suárez et al., 2010). Discrete gold-bearing phases are rare. Ortega et al. (2004) found two minute grains (possibly electrum) in pyrrhotite from semi-massive ore very close to a veinlet of chalcopyrite, and Suárez et al. (2010) identified eleven grains of native gold. To understand why both Pd and Pt are not present in BMS but as PGM, it is very useful to discuss the origin of the PGM.

Two different possibilities may be considered for the origin of the Pd–(Pt) bismuthotellurides in Aguablanca. These PGM could have formed by exsolution from the BMS during cooling or could have crystallized directly from an immiscible Te–Bi–rich liquid segregated from a fractionated sulfide melt (Holwell and McDonald, 2010). Experimental work by Helmy et al. (2007) demonstrated that a Te-rich (and other semimetals such as Bi, Sb, As) melt can segregate from a fractionated sulfide melt as long as the Te concentration in this melt exceeds its solubility in Fe-rich mss and iss, ~0.2 wt.%. These authors also demonstrated that Pd and Pt are strongly complexed by this Te-rich melt. At Aguablanca, it is difficult to infer the immiscibility of a Te-rich melt because, if all the Te present in the mineralized samples were assigned to the BMS, then the sulfide liquid would only have ~15 ppm. This amount of Te can easily dissolve in the sulfide at high temperatures, and therefore Pd can stay available in the sulfide liquid to enter later in solid solution within BMS. Hence, we suggest that PGM formation by exsolution from pyrrhotite and pentlandite is a more plausible explanation. Makovicky et al. (1986) demonstrated that PGE initially dissolved at high temperature in mss can subsequently exsolve as PGM on cooling. At Aguablanca, Pd and Pt as well as Te, Bi, and As, initially in pyrrhotite and pentlandite, were no longer able to remain dissolved in the BMS upon cooling and were expelled giving rise to the observed PGM assemblage. In agreement with this, most Bi and Te (generally more than 75% according to the mass balance calculation, Table 5) occur as discrete grains and, indeed, Piña et al. (2008) not only identified Pd–Pt-bismuthotellurides but tsumoite (BiTe), tellurobismuthite (Bi2Te3), bismuthinite (Bi2S3) and tetradorite (Bi3Te2S5) located invariably within the BMS. The presence of Pd-bismuthotellurides enclosed within pyrrhotite, pentlandite and chalcopyrite allows us to infer that Pd, Te and Bi were present in both semi-massive and disseminated ore samples normalized against the average whole rock content of the disseminated ore.

![Fig. 9. Metal content in pyrrhotite, pentlandite and chalcopyrite from semi-massive ore samples normalized against the average whole rock content of the disseminated ore. When data are below the detection limit, these values were employed.](image-url)
**mss and iss, and that the exsolution process took place after pentlandite exsolution from mss. Several lines of evidence support an origin of the bismuthotellurides as exsolutions from the BMS: (a) Most of the PGM (76% of a total of 301 PGM, Pifia et al., 2008) occur included in individual BMS. Platinum-group minerals crystallizing from an immiscible semimetal-rich melt would instead tend to occur around the margins of BMS and rarely enclosed in them (Tomkins, 2010). (b) The Pd–Pt bismuthotellurides exhibit textures (mostly <10 μm in size, rounded grains and laths, Fig. 6 of Pifia et al., 2008) also observed in PGM produced in experiments where mss is slowly cooled (Peregoedova et al., 2004). (c) The mersenkyite compositions at Aguablanca (characterized by high Bi replacing Te) reveal crystallization temperatures below 500 °C, and michenerite is stable only below this temperature (Hoffman and MacLean, 1976). This temperature is well below the solidus of a sulfide melt so these PGM were not able to crystallize directly from this melt. (d) The identification of tiny inclusions enriched in Pd–Pt–Bi–Te during laser ablation points to exsolution processes during cooling (e.g. Helmy et al., 2007).

In contrast to Pd and Pt, IPGE- and Rh-bearing phases are very scarce throughout the deposit. Ortega et al. (2004) have identified minor, tiny (<3 μm) grains containing Os–Ir–As–S, Ir–As–S and Ir–Pt–As. The first, probably a member of the irarsite-osarsite solid solution series, was found enclosed in chalcopyrite from the disseminated ore, and the Ir–As–S and Ir–Pt–As phases were identified in a single veinlet of chalcopyrite within chalcopyrite and pyrrhotite, respectively. None of these grains were found in semi-massive ore samples where BMS account for the majority of the Os, Ir, and Ru of the rock, but were identified in samples where the percentage of these elements in the BMS is significantly lower (Table 5). One would like to suggest that the amount of Os–Ir–(Ru, Rh) that is not present in the BMS from the disseminated and chalcopyrite-veined ores occurs as early-crystallized sulfarsenides. At some deposits, as for example in the Kylmakoski Ni–Cu deposit (Gervilla et al., 1998) and the Creighton deposit, Sudbury (Dare et al., 2010a,b), these As-rich PGM crystallize before mss crystallization and, as a consequence, the sulfide melt became impoverished in these elements. A similar hypothesis may be used for these samples in Aguablanca, but the PGEM studies have not conclusively identified enough sulfarsenide grains to confirm this idea. In contrast, at Aguablanca the low As concentrations of the mineralized rocks (2–7 ppm, Table 1, Pifia et al., 2008, 19–94 ppm normalized to 100% sulfide, lower than the As content which can dissolve into mss at 850 °C, ~0.2 wt%, Makovicky et al., 1992) likely prevented the overall saturation in IPGE-bearing sulfarsenides, holding the IPGE and Rh in the sulfide melt. Furthermore, although it seems evident that pyrrhotite and pentlandite from the disseminated ore samples host less PGE than in the semi-massive ones, the percentages obtained from the mass balance calculation must be taken with caution because they represent a minimum value (the whole rock data used is the detection limit) and, surely, the real value is much higher.

5.3. Role of pyrite as carrier of PGE

Pyrite is not a common BMS carrier of PGE in Ni–Cu–PGE sulfide deposits. Until now, only a few studies have found traces of these elements in pyrite. For example, Oberthür et al. (1997) found pyrites with up to 233 ppm Pt and 40 ppm Ru in the Main Sulfide Zone from the Great Dyke in Zimbabwe. Gervilla and Kojonen (2002) also identified pyrite with traces of Pd close to 30 ppm in the Keivitsan-sarvi Ni–Cu–PGE deposit, Finland. Recently, Dare et al. (in press) described two main generations of pyrite with distinct PGE contents in the McCreedy East deposit of the Sudbury Igneous Complex: (1) early-formed idiomorphic PGE-enriched pyrites formed by exsolution from mss (113 ppm Rh, 1–6 ppm Os–Ir–Ru and 0.1 ppm Pt), and (2) PGE-poor pyrites formed from the alteration of mss by late magmatic/hydrothermal fluids (~0.09 ppm Rh, <0.01 ppm Os–Ir–Pt). Also recently, Djon et al. (2010) identified pyrites from the sulfide ores of the Lac-des-Iles Complex with 0.01-0.3 ppm Os–Ru, 0.008-0.06 ppm Ir, and up to 1 ppm Rh and Pt. All these results reveal that pyrite may be an unsuspected carrier of PGE in Ni–Cu–PGE ore deposits. In Aguablanca, the two main textural types of pyrite (i.e., large idiomorphic grains and ribbon-like aggregates) have very different PGE concentrations (Table 3), suggesting that they likely formed at different times and by different processes. Ribbon-like pyrite is characterized by having similar IPGE and Rh contents to those of its host pyrrhotite showing an excellent positive correlation (Fig. 6). This correlation suggests that ribbon-like pyrites likely inherited the IPGE and Rh concentrations of host pyrrhotite. Based on similar positive correlation, Dare et al. (in press) and Djon et al. (2010) have proposed this same interpretation for secondary pyrites from the McCreedy deposit of the Sudbury Igneous Complex and sulfide ores of the Lac-des-Iles Complex, respectively. Ortega et al. (2004) and Pifia et al. (2008) have suggested that ribbon-like pyrite likely formed during the circulation of postmagmatic hydrothermal fluids, likely under higher F3O5 and F2 conditions than the sulfide assemblage. By contrast, the origin of idiomorphic pyrite is not well constrained. Contrarily to ribbon-like pyrite, idiomorphic pyrite hosts Pt with values as high as 15 ppm and high Rh contents (4.2–30.6 ppm). It is not clear if these Pt–Rh-rich pyrites are exsolution products from mss on cooling or alteration products of pyrrhotite like ribbon-like pyrites. In the McCreedy deposit of the Sudbury Igneous Complex, Dare et al. (in press) described IPGE-rich euhedral pyrites with the concentrations of these elements showing oscillatory zoning that was interpreted as having formed early at high temperature by exsolution from S-rich mss. In Aguablanca, the relatively high S to metal ratio interpreted from the compatible behavior of Rh in mss may have favored the exsolution of pyrite from a S-rich mss, but then it would be difficult to explain the enrichment of Pt in these grains because it is a strongly incompatible element in mss. Besides, the origin of Pt–Rh-rich pyrite in Aguablanca may be related to the hydrothermal remobilization of Pt from the PGM to the pyrite. Based on the marked Pt (and Au) negative anomalies in 100% sulfide, mantle-normalized metal abundance patterns and the erratic distribution of Pt throughout the deposit (even within individual ore types), Pifia et al. (2008) suggested that Pt (and Au) has likely undergone hydrothermal remobilization at small scale. Mineralogical evidence supporting this idea includes irregular edges of sperrylite at the contact with secondary chlorite suggesting partial dissolution of sperrylite by hydrothermal solutions (see Fig. 8c in Pifia et al., 2008). Suárez et al. (2010) have also found in their study of the PGE mineralogy in the Aguablanca gossan that sperrylite can be eventually dispersed and corroded by post-magmatic hydrothermal fluids when alteration is especially intense. Therefore, post-magmatic hydrothermal fluids could partially remobilize Pt and later could be responsible for the replacement of pyrrhotite by pyrite. Pyrite has a sperrylite-like crystal structure and thus the positions occupied by FeH can also be occupied by Pt2+, so pyrite may be a favorable mineral to host significant amounts of Pt. Further work will be needed to well constrain the origin of pyrite and its role as a carrier of these elements in the deposit.

6. Conclusions

This LA-ICP-MS study has revealed the role played by the BMS as carriers of PGE and other chalcophile elements in the Aguablanca deposit. The majority of Re, Os, Ir, Ru and Rh occur within pyrrhotite and pentlandite, mainly in the semi-massive ore (i.e., mss cumulate) where these elements are preferentially concentrated. Most Pd (~70%) and almost all Pt occur as discrete PGM (Pd–Pt bismuthotellurides and Pt-arsenides). The rest of Pd is present in solid solution within pentlandite and a minor amount in chalcopyrite. Pentlandite is also the main carrier of Co and chalcopyrite hosts significant amounts of Ag and Cd. Gold is not found in BMS and likely occurs as electrum.
This distribution of the platinum-group and chalcophile elements is a result of the complex behavior of these elements during the magmatic and postmagmatic evolution of the Aguablanca ore. Platinum-group and chalcophile elements, originally collected by the sulfide melt, behaved differently during the sulfide fractionation in accordance with their partition coefficients between mss and Cu-rich sulfide liquid. Rhenium, Os, Ir, Ru and Rh were preferentially partitioned into mss. With cooling, mss changed to pyrrhotite and exsolved pentlandite, and these elements remained in solid solution within both phases but preferentially within pyrrhotite. The incompatible elements Pt, Pd, Au, Ag and Cd were concentrated into the Cu-rich sulfide liquid. This fractionated liquid formed minor chalcopyrite veinslets with BMS depleted in IPGE and within both phases but preferentially within pyrrhotite. The incompatible behavior of Pd, pentlandite is the main BMS host of Pd, even in the semi-massive ore where pentlandite was exsolved from mss and chalcopyrite formed.

We thank two reviewers Mr. Pedro Jugo and Andy Tompkins for their constructive reviews and Mr. James Brenan for his editorial input which have helped to improve the manuscript. This research was financed by the Spanish research project BTE2003-03599 and the Canada Research Chair in Magmatic Metallogeny.

Acknowledgements

The authors are very grateful to Rio Narcea Recursos S.A. for the facilities given for carrying on this research. We would like to thank Dany Savard for his assistance with the laser ablation analysis. Professor J. González de Táñago and Mr. A. Larios of the University Complutense of Madrid kindly assisted in the electron microprobe analyses. We greatly acknowledge Dr. Sarah Dare for her valuable suggestions and discussions which have improved the manuscript. We thank two reviewers Mr. Pedro Jugo and Andy Tompkins for their constructive reviews and Mr. James Brenan for his editorial input which have helped to improve the manuscript. This research was financed by the Spanish research project BTE2003-03599 and the Canada Research Chair in Magmatic Metallogeny.

References

