Biblioteca de la Universidad Complutense de Madrid

Symplectic resolutions, Lefschetz property and formality.

Impacto

Cavalcanti, Gil R. y Fernández, Marisa y Muñoz, Vicente (2008) Symplectic resolutions, Lefschetz property and formality. Advances in Mathematics, 218 (2). pp. 576-599. ISSN 0001-8708

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

241kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0001870808000236




Resumen

We introduce a method to resolve a symplectic orbifold (M, omega) into a smooth symplectic manifold ((M) over tilde,(omega) over tilde). Then we study how the formality and the Lefschetz property of ((M) over tilde,(omega) over tilde) are compared with that of (M, omega). We also study the formality of the symplectic blow-up of (M, omega) along symplectic submanifolds disjoint from the orbifold singularities. This allows us to construct the first example of a simply connected compact symplectic manifold of dimension 8 which satisfies the Lefschetz property but is not formal, therefore giving a counter-example to a conjecture of Babenko and Taimanov.


Tipo de documento:Artículo
Palabras clave:Symplectic resolutions; Symplectic blow-ups; Lefschetz property; Formality
Materias:Ciencias > Matemáticas > Geometría
Código ID:17084
Referencias:

I.K. Babenko, I.A. Taimanov, On non-formal simply connected symplectic manifolds, Siberian Math. J. 41 (2000)204–217.

G.R. Cavalcanti, The Lefschetz property, formality and blowing up in symplectic geometry, Trans. Amer. Math. Soc.359 (2007) 333–348.

P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29(1975)245–274.

M. Fernández, V. Muñoz, Formality of Donaldson submanifolds, Math. Z. 250 (2005) 149–175.

M. Fernández, V. Muñoz, An 8-dimensional non-formal simply connected symplectic manifold, Ann. of Math. (2),in press.

P. Griffiths, J.W. Morgan, Rational Homotopy Theory and Differential Forms, Progr. Math., vol. 16, Birkhäuser Boston, Boston, MA, 1981.

S. Halperin, Lectures on minimal models, Mém. Soc. Math. France 230 (1983).

H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964) 109–203,205–326.

D. McDuff, Examples of symplectic simply connected manifolds with no Kähler structure, J.Differential Geom.20(1984) 267–277.

D. McDuff, D. Salamon, Introduction to Symplectic Geometry, second ed., Oxford Math. Monogr., Clarendon,Oxford, 1998.

S.A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Int. Math. Res. Not. 14 (1998) 727–733.

T.J. Miller, J. Neisendorfer, Formal and conformal spaces, Illinois. J. Math. 22 (1978) 565–580.

K. Niederkrüger, F. Pasquotto, Resolution of symplectic cyclic orbifold singularities, preprint math.SG/0707.4141.

D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1978) 269–331.

W.P. Thurston, Three-dimensional Geometry and Topology,vol. 1, Princeton Math. Ser., vol. 35, Princeton Univ. Press, Princeton, NJ, 1997.

A. Tralle, J. Oprea, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math., vol. 1661, Springer–Verlag, Berlin, 1997.

Depositado:13 Nov 2012 09:53
Última Modificación:07 Feb 2014 09:41

Sólo personal del repositorio: página de control del artículo