E-Prints Complutense

Liouville theorems and blow up behaviour in semilinear reaction diffusion systems



Último año

Andreucci, D. y Herrero, Miguel A. y Velázquez, J.J. L. (1997) Liouville theorems and blow up behaviour in semilinear reaction diffusion systems. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 14 (1). pp. 1-53. ISSN 0294-1449

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://www.sciencedirect.com/science/article/pii/S0294144997801485

URLTipo de URL


This paper is concerned with positive solutions of the semilinear system: (S) {u(t) = Δu + v(p), p ≥ 1, v(t) = Δv + u(q), q ≥ 1, which blow up at x = 0 and t = T < ∞. We shall obtain here conditions on p, q and the space dimension N which yield the following bounds on the blow up rates: (1) u(x, t) ≤ C(T - t)(-p + 1/pq - 1), v(x, t) ≤ C(T - t)(-q + 1/pq - 1), for some constant C > 0. We then use (1) to derive a complete classification of blow up patterns. This last result is achieved by means of a parabolic Liouville theorem which we retain to be of some independent interest. Finally, we prove the existence of solutions of (S) exhibiting a type of asymptotics near blow up which is qualitatively different from those that hold for the scalar case.

Tipo de documento:Artículo
Palabras clave:Semilinear systems; reaction diffusion equations; asymptotic behaviour; Liouville theorems; a priori estimates; parabolic equations; heat-equations
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:17088
Depositado:13 Nov 2012 09:48
Última Modificación:07 Feb 2014 09:41

Descargas en el último año

Sólo personal del repositorio: página de control del artículo