Universidad Complutense de Madrid
E-Prints Complutense

Radial solutions of a semilinear elliptic problem

Impacto

Descargas

Último año

Herrero, Miguel A. y Velázquez, J.J. L. (1991) Radial solutions of a semilinear elliptic problem. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 118 (3-4). pp. 305-326. ISSN 0308-2105

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

886kB

URL Oficial: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8244935


URLTipo de URL
http://journals.cambridge.orgEditorial


Resumen

We analyse the set of nonnegative, global, and radial solutions (radial solutions, for short) of the equation -Δu + u(p) = f in R(N), N ≥ 1, where 0 < p < 1, and f element-of L(loc)1(R(N)) is a radial and almost everywhere nonnegative function. We show that radial solutions of (E) exist if f(r) = o(r2p/1-p) or if f(r) ≈ cr2p/1-p as r --> ∞, where [GRAPHICS] When f(r) = c*r2p/1-p + h(r) with h(r) = o(r2p/1-p) as r --> ∞, radial solutions continue to exist if h(r) is sufficiently small at infinity. Existence, however, breaks down if h(r) > 0, [GRAPHICS] Whenever they exist, radial solutions are characterised in terms of their asymptotic behaviour as r --> ∞.


Tipo de documento:Artículo
Palabras clave:Equation; RN; set of nonnegative; global and radial solutions
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:17132
Depositado:20 Nov 2012 12:41
Última Modificación:07 Feb 2014 09:42

Descargas en el último año

Sólo personal del repositorio: página de control del artículo