E-Prints Complutense

On the rational homotopy type of a moduli space of vector bundles over a curve

Impacto

Descargas

Último año



Biswas, Indrani y Muñoz, Vicente (2008) On the rational homotopy type of a moduli space of vector bundles over a curve. Communications in Analysis and Geometry, 15 (1). pp. 183-215. ISSN 1019-8385

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

577kB

URL Oficial: http://www.intlpress.com/CAG/


URLTipo de URL
http://www.intlpress.comEditorial


Resumen

We study the rational homotopy of the moduli space N-X that parametrizes the isomorphism classes of all stable vector bundles of rank two and fixed determinant of odd degree over a compact connected Riemann surface X of genus g, with g >= 2. The symplectic group Aut(H-1(X, Z)) congruent to Sp(2g, Z) has a natural action on the rational homotopy groups pi(n)(N-X)circle times(Z)Q. We prove that this action extends to an action of Sp(2g, C) on pi(n)(N-X)circle times C-Z. We also show that pi(n)(N-X)circle times C-Z is a non-trivial representation of Sp(2g, C) congruent to Aut (H-1(X, C)) for all n >= 2g - 1. In particular, N-X is a rationally hyperbolic space. In the special case where g = 2, for each n is an element of N, we compute the leading Sp(2g, C) representation occurring in pi(n)(N-X)circle times C-Z.


Tipo de documento:Artículo
Palabras clave:Vector bundles; Moduli space; Smooth projective curve;Riemann surface;Rational homotopy groups
Materias:Ciencias > Matemáticas > Geometria algebraica
Ciencias > Matemáticas > Topología
Código ID:17141
Depositado:20 Nov 2012 12:43
Última Modificación:07 Feb 2014 09:42

Descargas en el último año

Sólo personal del repositorio: página de control del artículo