Biblioteca de la Universidad Complutense de Madrid

Semipositive bundles and Brill-Noether theory

Impacto

Muñoz, Vicente y Presas , Francisco (2003) Semipositive bundles and Brill-Noether theory. Bulletin of the London Mathematical Society, 35 (2). pp. 179-190. ISSN 0024-6093

[img]
Vista previa
PDF
180kB

URL Oficial: http://journals.cambridge.org/abstract_S0024609302001741




Resumen

A Lefschetz hyperplane theorem for the determinantal loci of a morphism, between two holomorphic vector bundles E and F over a complex manifold is proved, under the condition that E* x F is Griffiths k-positive. This result is applied to find some homotopy groups of the Brill-Noether loci for a generic curve.


Tipo de documento:Artículo
Palabras clave:Ample bundle; Lefschetz hyperplane theorem; Determinantal locus; Griffiths k-positive; Brill-Noether loci
Materias:Ciencias > Matemáticas > Geometria algebraica
Ciencias > Matemáticas > Topología
Código ID:17152
Referencias:

A. Andreotti and T. Fraenkel, The Lefschetz theorem on hyperplane sections, Annals Math. (2)69 (1959) 713–717.

E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves, Springer-Verlag, New York (1985).

R. Bott, On a theorem of Lefschetz, Michigan Math. J. 6 (1959) 211–216.

O. Debarre, Lefschetz theorems for degeneracy loci, Bull. Soc. Math. France 128 (2000) 283–308.

W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981) 271–283.

P. A. Griffiths, Hermitian differential geometry, Chern classes and positive vector bundles in Global Analysis,Princeton University Press, Princeton, N.J. (1969).

Y-T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Diff.Geom. 17 (1982) 55–138.

P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York (1978)

W-K. To and L. Weng, Curvature of the L2-metric on the direct image of a family of Hermitian-Einstein vector bundles, Amer. J. Math. 120 (1998) 649–661.

R. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall, Englewood Cliffs, N.J.,2nd ed. Springer-Verlag (1973).

Depositado:20 Nov 2012 12:48
Última Modificación:07 Feb 2014 09:42

Sólo personal del repositorio: página de control del artículo