E-Prints Complutense

Nonsimple universal knots



Último año

Montesinos Amilibia, José María y Hilden, Hugh Michael y Lozano Imízcoz, María Teresa (1987) Nonsimple universal knots. Mathematical Proceedings of The Cambridge Philosophical Society, 102 (1). pp. 87-95. ISSN 0305-0041

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=2484848

URLTipo de URL


A link or knot in S 3 is universal if it serves as common branching set for all closed, oriented 3-manifolds. A knot is simple if its exterior space is simple, i.e. any incompressible torus or annulus is parallel to the boundary. No iterated torus knot or link is universal, but we know of many knots and links that are universal. The natural problem is to describe the class of universal knots, and this was asked by one of the authors in his address to the `Symposium of Kleinian groups, 3-manifolds and Hyperbolic Geometry' held in Durham, U. K., during July 1984. In the problem session of the same symposium W. Thurston asked if a non-simple knot can be universal and more concretely, if a cable knot can be universal. The question had the interest of testing whether the universality property has anything to do with the hyperbolic structure of some knots. That this is not the case is shown in this paper, where we give infinitely many examples of double, composite and cable knots that are universal.

Tipo de documento:Artículo
Palabras clave:link; knot; universal; 3-manifold; hyperbolic structure; cable knots
Materias:Ciencias > Matemáticas > Topología
Código ID:17163
Depositado:23 Nov 2012 11:49
Última Modificación:07 Feb 2014 09:43

Descargas en el último año

Sólo personal del repositorio: página de control del artículo